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Abstract 

Biological synthesis of selenium nanoparticles (SeNPs) using microorganisms has received profound interest 

because of their potential to synthesize nanoparticles of various size, shape and morphology. In the current 

study, 206 selenium resistant bacterial isolates were isolated from 18 samples from different environmental 

sources of Saudi Arabia. Among These isolates, bacterial strain BGRW was selected on the basis of its ability to 

produce stable extra/intracellular SeNPs. Molecular characterization of this isolate indicated that BGRW strain  

belongs to the Providencia vermicola. BGRW was found to be highly resistant to selenium dioxide up to 20 

mM.The biosynthesis of SeNPs was monitored by UV–Visible spectrum that showed surface plasmon 

resonance (SPR) peak at 295 nm. Further characterization of synthesized SeNPs was carried out using the XRD, 

TEM and FTIR spectroscopy. TEM and XRD analysis revealed that the SeNPs synthesized by BGRW was 

hexagonal in shape with a size range of ∼3 to 50 nm with average 28nm. FTIR spectroscopy confirmed the 

presence of proteins as the stabilizing agent surrounding the nanoparticles. In the present study six antibiotics 

were investigated to explore their synergistic effect when combined with SeNPs against various pathogenic. All 

tested antibiotics showed synergistic inhibition against a growth of the pathogenic bacteria. The biocide actions 

of SeNPs on Gram-negative and Gram-positive pathogens were studied using SEM. The results showed 

damage, blebs, fusion, clumps and randomly distribution in the cell wall of the tested microbes resulting the 

death of cells.  
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The MIC 90 of SeNPs was 10μg/mL, 15μg/mL and 20μg/mL for Staphylococcus aureus, Bacillus cereus and 

Escherichia coli respectively. The effect of SeNPs on the prevention and removing of biofilm were also studied, 

the antibiofilm concentration of SeNPs was 12μg/mL against Salmonella enteritidis and B. cereus, 16μg/mL 

against S. aureus and E. coli while the antibiofilm concentration was 18μg/mL against Proteus sp. and 

Peudomonas aeruginosa. Although the biogenic SeNPs had antimicrobial and antibiofilm effects, they did not 

show significant ability to remove the established biofilm up to 32μg/mL. The concentration of 24μg/mL 

showed a slight effect on removing the established biofilm. The antibiofilm effect of the combination of SeNPs 

with amoxicillin was investigated against six bacterial biofilms and result show a synergistic effect at a lower 

than the antibiotic or SeNPs minimum antibiofilm concentrations. 

Keywords: Selenium nanoparticles; Antimicrobial effect; MIC; 16s rRNA;  Antibiofilm; Transmission electron 

microscope;  X-ray ;  FTIR analysis. 

1. Introduction  

Nanotechnology provides a valid tool to give effect enhancing and toxicity reducing of many chemo-preventive 

compounds that naturally occurring, like elemental selenium [1]. The synthesis of nanoparticles which have 

sizes less than 100 nm in at least one dimension with unique chemical, physical [2], photoelectrochemical [3], 

electrical, mechanical, electronic [4], magnetic [5], optical [6] and biological properties [7] that dissimilar from 

those of the bulk materials. 

The origin of “Selenium” name came from the Selene which means moon goddesses in a Greek culture. 

Selenium (Se) was discovered by Jacob Berzelius in 1818. This element can be considered an essential trace 

element micronutrient for living creatures at low concentrations but it becomes toxic and harmful at higher 

doses. The range of dietary deficiency (< 40 μg/day) and excess (> 400 μg/day) is fairly narrow [8]. There are 

over 40 diseases in man is known to be related to  selenium deficiency [9]. In general, selenium occurs in large 

amounts in coals and crude oils but it exists comparatively in little amounts in geological raw materials, soils 

and sediments [10]. In addition, industrial products such as oil refining, phosphate and metal ore mining and 

coal fire-based power activity can all participate in the dispersion of selenium in the earth. [11]. All of which 

ensure possible ways for the mobilization of selenium in the biosphere. Selenium exists in four valence states: 

selenate (𝑆𝑆𝑆𝑆+6), selenite (𝑆𝑆𝑆𝑆+4), selenide (𝑆𝑆𝑆𝑆−2) and elemental selenium (𝑆𝑆𝑆𝑆0) and can combine with oxygen, 

sulfur, halogens and metals [12]. These compounds are metabolized in the living system [13, 14] 

Chemical and physical production of SeNPs are expensive, contamination arises from chemical precursors and 

products, high toxicity of the used solvents and in many cases demand specialized equipment [15, 16]. The main 

disadvantages of physical methods are their low production rates, high energy consumption and high costs [16]. 

Biological methods of nanoparticles synthesis are considered to be safe and called "green chemistry" as they 

tend to be an environmentally friendly method for production of SeNPs because they include natural processes 

that happen in living systems [17]. Microorganisms act a major part in the biogeochemical cycle of selenium in 

the environment [18] including anaerobic selenite reducing bacteria encompass Thauera selenatis [19], 

Aeromonas salmonicida [20] and purple non-sulfur bacteria [21] and aerobic bacteria involved in selenite 
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reduction include diverse species such as Rhizobium sp. B1 [22], Stenotrophomonas maltophilia SeITE02 [23], 

Pseudomonas sp. CA5 [24], Duganella sp. and Agrobacterium sp. [25]. However, these methods also have some 

drawbacks, this limitation has been overcome by optimizing the growth condition for the microorganisms 

through the adjustment of factors such as the pH [26], incubation time and temperature [27], metal salt 

concentrations [28] and the amounts of biological inoculum [29]. It should be noted that SeNPs as the reverse 

reaction is too slow to form Se compounds [25]. Metal ions are often absorbed into the cells, reduced and 

deposited in intracellular space of microorganisms to form NPs [30]. Not only intracellular but also extracellular 

elemental selenium formation was detected, although accumulation of SeNPs was mainly observed inside the 

bacterial cell [31]. Biosafety assessment of SeNPs did not show considerable toxicological effects on Artemia 

larvae [32]. The acute toxicity (LD50) of SeNPs in mice (92.1 mg/kg) is remarkably lower than that of selenite 

(15 mg/ kg), selenomethionine (25.6 mg/kg) and methylselenocysteine (15 mg/kg) [33]. Limited information 

about the inhibitory effect of SeNPs on the prokaryotic organisms is obtainable [34]. Reference [35] 

demonstrated that selenium-enriched probiotics highly inhibit the growth in-vivo and in-vitro of pathogenic E. 

coli. While [36] demonstrated that SeNPs showed good antimicrobial activity against Pseudomonas sp. than 

Staphylococcus aureus, but SeNPs failed to show activity against E. coli and Klebsiella sp.. Even so at high 

concentration (620 μg/mL), selenium nanoparticles inhibited the growth of S. aureus and E. coli [37]. Recently, 

the biosynthesized SeNPs were used to prevent growth and biofilm formation by six foodborne pathogens 

including Bacillus cereus, Enterococcus faecalis, S. aureus, Escherichia coli O157:H7, Salmonella 

Typhimurium, and Salmonella Enteritidis. The MIC90 of SeNPs against all tested bacteria was 25μg/mL, 

whereas the antibiofilm concentration was 20μg/mL against all bacteria, except B. cereus [32]. Chemically 

produced SeNPs with range of 40-100 nm showed inhibition effect against S. aureus when it used at 

concentrations of 7.8, 15.5 and 31 μg/mL, they added that there is no variation between the effects of these 

concentrations, when SeNPs were applied at concentrations higher than 20 μg/mL against the Gram-positive and 

Gram-negative pathogenic bacteria, no considerable differences were obtained between all studied strains at the 

same concentration [34]. SeNPs were synthesized by Lactobacillus sp. or their cell-free spent broth inhibited the 

growth of Candida albicans and they recommended investigating for possible use in anti-Candida probiotic 

formulations [38]. On the contrary, a stimulating activity appeared in a sub-inhibitory concentration of SeNPs 

(2.5-10 μg/mL) to enrichment some organisms such as Aspergillus niger [39].  

In this study, we report the (I) biosynthesis of SeNPs using Providencia vermicola BGRW strain which isolated 

from the rhizosphere of  the farm at Taif, KSA. (II) Characterization of biogenic SeNPs by UV-Vis 

spectroscopy, transmission electron microscopy (TEM), Fourier transforms infrared spectroscopy (FTIR) and X-

ray diffraction (XRD) spectra. (III) Investigation of the effect of SeNPs against some pathogenic 

microorganisms on planktonic and biofilm forms and (IX) in addition to the synergistic effect of SeNPs 

combined with antibiotics. 

2. Materials & Methods 

2.1. Chemicals 

Media and solvents were purchased from Sigma Aldrich Co., Oxoid-England , DIFCO-BD  and Pharmacia 
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Chemicals and kits implicated in molecular biology tests (PCR product purification kit, Hot Star Master mix kit 

and DNA marker) were obtained from QIAGEN, All chemicals were at least of analytical reagent grade. The 

bacterial pathogens were obtained from Al-Idwani Hospital, Taif, KSA. Milli-Q deionized water was used 

throughout the experiments. 

2.2. Bacterial Strain and Growth Conditions 

2.2.1. Isolation of selenium reducing bacteria 

The soil samples were transferred to the laboratory in sealed plastic bags and kept at 4°C until further use while 

water sample was collected in lab bottles. Samples were serially diluted in sterile 0.8% NaCl solution and then 

plated onto agar plates with different concentrations of selenium dioxide and incubated for 2 days at 37 º C. 

Colonies which have red color were evaluated as selenium reducing strains. Previously isolated strains were 

grown on tryptic soy agar (TSA), casein starch agar for actinomycetes or marine agar for halophilic bacteria 

[40]. After isolation, the strains were maintained in slant agar amended with 0.1 mM selenium dioxide at 4°C 

for further studies. 

2.2.2. Screening of isolates for SeNPs Synthesis 

Selenium reducing strains especially were tested for the synthesis of selenium nanoparticles. Bacterial strains 

were grown up in test tubes containing 10 ml tryptic soy medium supplemented with 1mM SeO2 in a shaker 

incubator at 37 ͦ C After 24 h incubation, the biomass was separated from the medium by centrifugation (7000 

rpm, 10 min) and the red selenium nanoparticles formed were inspected in the precipitated biomass or 

extracellular formation of SeNPs in the upper supernatant according to [41] with slight modification. The 

accumulation and reduction of selenium were followed by visual observation of the biomass turning red, as a 

convenient indication of the formation of SeNPs [31].  

2.2.3. Collection and purification of selenium nanoparticles  

SeNPs collection was different depending on NPs location when cells containing the particles as intracellular 

production, bacteria were collected by centrifugation (7000 rpm, 4 ͦ C, 10 min) from 50 mL amended with 1mM 

SeO2 of the culture and washed three times with ultrapure water. Subsequently, the pellet was resuspended in 5 

mL of Phosphate Buffer solution pH. 7.2 as wash buffer and followed by cell-disruption with an ultrasonicator 

(130 W, 10 min, Vibracell VCX- 130; Sonics and Materials Inc., CT, USA). The suspensions were filtered with 

0.25 μl Millipore syringe filters. Then the SeNPs were collected from the filtrates by centrifugation (10,000 

rpm, 4 ᶱ C, 30 min) and suspended in 5 mL of ultrapure water according to [42] with slight modification. When 

the production of SeNPs was extracellular, bacteria were precipitated using centrifugation (7,000 rpm, 4 ͦ C, 10 

min) from 50 mL of the culture then the supernatant was filtered through 0.25 μl Millipore syringe filters to 

obtain free cell supernatant which had SeNPs. Then the SeNPs were collected using centrifugation (10, 000 rpm, 

4 ᶱ C, 30 min) and suspended in 5 mL of ultrapure water [43]. The precipitate of SeNPs from intra/extracells 

was washed with ethanol and water to remove if any contaminants present and dried in hot air oven at 45° -50°C 

this step called purification [44]. The selenium nanoparticles were purified from the protein and other 
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contaminants. 

2.2.4. Genotypic characterization of Providencia vermicola BGRW 

The morphological and physiological characterization of the selected isolates were performed by biochemical 

tests using the Bergey’s Manual of Determinative Bacteriology [45]. Further characterization of target isolate 

was done by means of 16S rRNA gene analyses. The genomic DNA of the isolate was extracted according to 

the standard method. The 16s rRNA gene was amplified by PCR using the universal primer set 8–27F 5′-

GAGTTTGATCCTGGCTCAG-3′ [46] and 1492R 5′-GGTTACCTTGTTACGACTT-3′ [47]. The conditions 

for thermal cycling were as follows: denaturation of the target DNA at 94 º C for four minutes, followed by 30 

cycles at 94 º C for one minute, primer annealing at 52 º C for one minute, and primer extension at 72 º C for 

one minute. At the end of the cycling, the reaction mixture was held at 72 º C for 10 min and then cooled to 4 º 

C. The amplified PCR product was sequenced using big dye terminator cycle sequence kit. PCR products were 

cloned into Macrogen Vector DB through the Easy T-Vector System. The product of the sequencing reaction 

was analyzed by using DNA sequencer ABI PRISM 310 genetic analyzer (Perkin Elmer, USA). This step was 

conducted by (Macrogen, Korea). Data were submitted to Gen Bank database and 16s rRNA gene sequence was 

registered as accession KX447430 in the GenBank database.  

The comparison of 16s rRNA gene sequences is a powerful tool for deducing phylogenetic and evolutionary 

relationships among bacteria, archaebacteria and eukaryotic organisms. The DNA sequence was compared to 

the Gen Bank database in the National Center for Biotechnology Information (NCBI) using the BLAST N 

program [48]. These sequences were aligned using the CLUSTAL_W 1.83 program [49] and a neighbor-joining 

phylogenetic tree was constructed using MEGA 7.0.14. Program against the database of type strains with validly 

published prokaryotic names as illustrated by [50]. Missing nucleotides at both the beginning and the end of the 

sequences were deleted before construction of the trees. 

2.3. Characterization of selenium nanoparticles  

2.3.1. UV-Vis spectrophotometer 

The characterizations of the synthesized nanoparticles were carried out according to the method described 

previously [51]. The biologically synthesized selenium nanoparticles were characterized by UV-Vis 

spectroscopy (Perkin Elmer, Lambda 25) instrument scanning in the range of 200-800 nm, at a resolution of 1 

nm. Sample for UV-Vis spectra measurement was conducted to collected and purified SeNPs as mention above 

at 25 ͦ C, cell-free supernatant without the addition of SeO2 was used as a control throughout the experiment.  

2.3.2. Transmission Electron Microscopy (TEM) measurements 

The SeNPs sample was first centrifuged at 10,000 rpm for 10 minutes.  For transmission electron microscope 

(TEM) measurements,  a drop of solution containing synthesized selenium nanoparticles was placed on the 

carbon coated copper grids and kept under vacuum desiccation for an overnight before loading them onto a 

specimen holder.  Study of size and  morphology of the nanoparticles was performed by means of transmission 
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electron microscopy (TEM) operated at 120 k accelerating voltage (JTEM 1230, Japan, JEOL) at King Saud 

University.  

2.3.3. X-Ray Diffraction (XRD) analysis 

X-ray diffraction (XRD) analysis was carried out using an automated diffract meter (Philips type: Pw1840), at a 

step size of 0.02, the scanning rate of 20 in 2θ /min, and a 2θ  range from 10 ͦ to 80 .ͦ  Indexing of the powder 

patterns and least squares fitting of the unit cell parameters was possible using the software X'Pert High score 

Plus.  

2.3.4. Fourier Transforms Infrared Spectroscopy (FTIR) analysis 

FTIR measurements were carried out using Attenuated Total Reflection Fourier Transform Infrared (ATR-

FTIR) spectrometer (Bruker, Germany, Alpha-P). The instrument was configured with ATR sample cell 

including a diamond crystal with a scanning depth up to 2 micrometers.  To separate any free biomass residue or 

compound that is not capping ligand of the nanoparticles, the residual solution of 100 ml after the reaction was 

centrifuged at 10000 rpm for 30 min.  The bio-transformed products present in the cell-free filtrate were freeze-

dried sample powders were applied to the surface of the crystal then locked in place with a "clutch-type" lever 

before measuring transmittance. Each of the spectra was collected in the range 400- 4,000 cm-1 at 2 cm-1 

resolution. Comparing with the conventional transmission mode, this technique is faster sampling without 

preparation, excellent reproducibility and uncomplex to use. 

2.4. Antimicrobial activity of selenium nanoparticles  

2.4.1. Determination the inhibition zone of SeNPs different concentrations 

The antimicrobial activity of selenium nanoparticles were assessed by well diffusion method (Kirby-Bauer 

testing) according to [52] with slight modification, against Gram-positive pathogens (Staphylococcus aureus, 

Bacillus cereus, MRSA , Streptococcus pneumoniae and Streptococcus agalactiae ), Gram-negative pathogens 

(Escherichia coli, Pseudomonas aeruginosa, Enterobacter sp. , Enterococcus sp. Proteus mirabilis, Klebsiella 

sp. Salmonella enteritidis and Stenotrophomonas maltophilia) and Candida albicans which were obtained from 

the microbiology laboratory of Al-Idwani Hospital. The Muller-Hinton agar plates were prepared and 100 μl of 

each activated culture of pathogens were spread to individual plates by sterile swab. Wells of 6 mm diameter 

were made using a sterile cork borer and different concentrations (10 or 15 μg/ml)  of SeNPs were added into 

individual wells and incubated at 37°C for 24 h and the Zone of Inhibition (ZOI) formed surrounding the well 

was noted for all strains. Clear zone of ( 25 ≤ ZOI ≤ 40 mm) in diameter were classified as ( very strong 

inhibition ), zone of (15 ≤ ZOI ˂ 25mm) in diameter were classified as (strong inhibition), zone of (10 ≤ ZOI ˂ 

15mm) in diameter were classified as (moderate inhibition) and < 10 as (weak inhibition) (Elert and Juttner, 

1996). The zone of inhibition was compared against a set of standard antibiotics discs: norfloxacin (NX) 10µg, 

ampicillin (AMP) 25µg, sulfamethoxazole (SXT) 25µg, penicillin V (PNV) 10µg, penicillin G (PNG) 10µg and 

gentamicin (GN) 10µg . 

https://www.google.com.sa/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0ahUKEwiS17H9juLPAhXE1hoKHf2bB9IQFggiMAE&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FPseudomonas_aeruginosa&usg=AFQjCNHWHxAsGT7ZwyL2Msbt9LqSdximSQ
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2.4.2. Synergistic effect of SeNPs with an antibiotic at an antibacterial activity 

The disk diffusion method was used to evaluate the synergistic of SeNPs with antibiotics. Briefly, Mueller-

Hinton agar plates were inoculated with 100 μl of each  activated culture of pathogens and made three discs in 

each plate; the first for 100μl of SeNPs, the second for antibiotic (HiMedia Chemicals Pvt. Ltd., Mumbai, 

India), the third for combination of SeNPs + antibiotic and were incubated at 37°C for 24 h. Next, the inhibition 

zone (ZOI) diameters of them were measured. Synergistic effect was calculated by the following equation: The 

synergistic effect = (𝐵𝐵−𝐴𝐴)
(𝐴𝐴)

 × 100 where A is ZOI for the antibiotic and B is ZOI for the antibiotic + SeNPs [53]. 

2.4.3. Determination minimum inhibition concentration (MIC 90) of SeNPs by plate counting method  

Determination of (MIC 90 ) which defined as minimum inhibitory concentration required to inhibit the growth 

of 90% of organisms by colony forming unit (CFU) to pathogens treated with SeNPs by plate counting method. 

Antibacterial test pathogens were grown in LB liquid medium at 37°C for 12 hours before they were diluted in 

fresh LB liquid medium to reach OD600 = 0.003 (optical density). Gradient concentrations of SeNPs (5, 10, 15, 

20, 25 μg/ml) were then added to the culture medium. Bacteria and SeNPs mixed cultures were put into a 37°C 

incubator for 24h. Serial 10-fold dilutions with saline were then made and cultured on LB agar plates. Plates 

were incubated overnight at 37°C and CFU was determined using the conventional plate count method. SeNP-

free pathogen was used as a negative control and 25 μg/ml sulfamethoxazole was used as a positive control for 

antibacterial activity [54].  

2.4.4. Assay of the effect of SeNPs on bacterial cell structure by Scanning Electron Microscopy (SEM) 

The interaction between pathogenic isolates and the potentially effective SeNPs was examined by Scanning 

electron microscopy (SEM). Muller-Hinton broth was prepared and sterilized to use for preparing the 

inoculums. After the incubation period, 100 µl of the bacterial cultures were added in a sterilized tube and 

incubated with 25μg/mL of SeNPs for 6 h at 37 °C. Control group was generated without any NPs After that 0.1 

ml of treated and untreated cells were added to sterile blank discs and left to dry for morphology and structure 

analysis by SEM according to the method that described by [55] with slight modification. 

2.4.5. Antibiofilm effect of SeNPs  

The antibiofilm effect of SeNPs against various pathogens was determined in vitro using the commonly used 96 

wells polystyrene microtiter-plates method (Khirallah and El-deeb, 2015). Briefly, 10 μL activated culture of 

each tested strain (about 106 CFU/mL) was added. The final tested concentrations of SeNPs were 0, 4, 8, 12, 16 

and 18μg/ml. The total volume in each well was adjusted to 250 μL using tryptic soy broth (TSB). Wells 

contained 240 μL TSB and 10 μL stimulated culture were used as positive control, whereas wells with 250 μL 

TSB were applied as a negative control. Plates were incubated at 37 ͦ C for 24 h. After the  incubation period, 

contents of the microtiter-plates were emptied and the wells were washed three times with 300 μL of phosphate 

buffered saline (PBS, pH 7.2). The remaining adhered bacteria were fixed with 250 μL of methanol per well. 

After 15 min, microtiter plates were poured off and air dried. The microtiter-plates were stained with 250 μL per 
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well of 1% crystal violet, used for gram-staining, for 5 min. The surplus of stain was rinsed off by placing the 

microtiter-plates under slow running tap water. After drying the microtiter-plates, the dye bound to the adherent 

cells was extracted with 250 μL of 33% (v/v) glacial acetic acid for each well. The absorbance (A) of each well 

was measured at 570 nm using an ELISA reader (HumaReader HS, Human, Germany). The cut-off absorbance 

(Ac) was the mean absorbance of wells contained TSB only, without bacterial cells (negative control). Based on 

the absorbance (A570nm) obtained after 24 h by bacterial biofilms, strains were classified into four categories 

[56, 57]. Briefly, Strains were classified as follows: A = Ac = no biofilm producer (-); Ac < A ≤ (2× Ac) = weak 

biofilm producer (+); (2 × Ac) < A ≤ (4 × Ac) = moderate biofilm producer (++); (4 ×Ac) < A = strong biofilm 

producer (+++). All tests were implemented in triplicate and the results were averaged. The antibiofilm 

concentration was defined here as the minimum SeNPs concentration that caused restrain biofilm formation by 

each tested bacterium (to be in the category of no biofilm producer). The percentage of biofilm inhibition was 

calculated using the equation:  

% biofilm inhibition = 1 – (OD570 of cells treated with SeNPs/OD570of non-treated control) × 100.  

2.4.6. Biofilm removing ability of SeNPs  

The established biofilms by the tested strains were developed as mentioned above. To investigate the ability of 

SeNPs to remove the established biofilms, different concentrations (0, 20, 24, 28 and 32 μg/ml) of SeNPs were 

incorporated in the PBS that was used in the washing step as described by [32]. After incubation for 24 h at 37  ͦ

C contents of the microtiter-plates were poured off and the wells were washed three times with 300 μL of PBS 

that contained the tested concentration of SeNPs. The remaining steps were done as mentioned above and the 

pathogenic strains were classified (no-, weak, moderate or strong biofilm producer) based on the quantity of 

biofilm remained after washing with SeNPs. 

2.4.7. Synergistic antibiofilm effect of SeNPs with antibiotic 

Synergistic  antibiofilm effects of SeNPs with antibiotic against various pathogens were determined also in vitro 

using the commonly used 96 wells polystyrene microtiter-plates method. Briefly, 10 µL activated culture of 

each tested strain (about 106 CFU/mL) were added. The final tested concentrations of SeNPs were 7.5, 10, 12.5, 

15, 17.5, 20 and 25μg/ml with the same concentrations (7.5, 10, 12.5, 15, 17.5, 20 and 25μg/ml) of amoxicillin 

antibiotic (AMC) that means we used (15, 20, 25, 30, 35, 40 and 50μg/ml) concentrations of 1(SeNPs):1(AMC). 

The effect of only amoxicillin on biofilm forming ability of all tested strains was determined by using (15, 20, 

25, 30, 35, 40 and 50μg/ml) concentrations as a control. The total volume in each well was adjusted to 250 µL 

using tryptic soy broth (TSB). The remaining steps were done as mentioned above. 

3. Results &Discussion 

3.1. Isolation of selenium reducing bacteria 

Eighteen samples were collected from different areas as follows: 4 samples of soil from rhizosphere of plant 

irrigated with waste water from farm at Taif ,1 sample of soil from Al-Sail roadway at Taif , 2 samples of soil 
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from rhizosphere at Taif University , 4 samples of soil from rhizosphere at Makkah city , 2 samples of metal-

rich dump soil at industrial city, Taif , 1 sample of soil from drainage of chemical labs at Taif University , 1 

sample of soil from Al-Arj Valley at Taif , 1 sample of Calotropis procera leaf surface,1 sample of waste water 

and 1 sample of Red- sea water from Jeddah coast, during an exhaustive screening program, undertaken in our 

laboratory to isolate bacteria capable of synthesizing selenium nanoparticles. The samples were not chosen 

randomly, but sites of isolation measured way based on increasing the amount of pollutants that were exposed to 

the region and the nanoparticles producing bacteria isolating places in previous studies [58]. The collected 

samples were serially diluted and plated on tryptic soy agar (TSA) medium supplemented with 1mM SeO2 and 

the plates were incubated at 37 ºC for 48 h. After the incubation period the bacterial colonies were observed and 

they were further subcultured on the same medium to obtain pure colonies tolerate selenium ions. It is known 

that the physical properties of biologically produced nanoparticles may vary among different types of organisms 

[59, 60]. In this study, varieties of bacteria were screened for their ability to synthesis intra/extracellular 

selenium nanoparticles of uniform size and shape. The study indicated that terrestrial strains isolated from soil 

irrigated with wastewater produced the nanoparticle faster than others strains. Rest of the study reported in this 

work was done using the SeNPs synthesized using the cultures of Gram-negative, facultative anaerobic, straight 

rods and motile that highly resistant to selenium dioxide reach to 20 mM which was later identified as 

Providencia vermicola BGRW belonging to the family Enterobacteriaceae which has discriminatory ability to 

tolerate many metals such as Selenium, Cadmium, Silver, Zinc, Copper, Lead, Nickel, Cobalt and Bismuth 

metals.  

3.2. Phylogenetic analysis of 16s rRNA gene sequence 

Molecular characterization of bacterial strains using 16s rRNA gene study is an essential method used for 

taxonomic purposes, largely due to the mosaic composition of phylogenetically conserved and variable regions 

within the gene [61, 62]. Molecular techniques were used to prove and further confirm the identification of the 

Providencia strain BGRW to the species level. The 16s rRNA gene phylogeny was carried out, DNA was 

extracted from bacterium Providencia strain BGRW according to [63]. An amplicon representing the 16s rRNA 

gene of 799bp was obtained. The partial 16s rRNA gene sequence was determined and was compared to the Gen 

Bank database in the National Center for Biotechnology Information (NCBI) using the BLASTN 2. 4. 0, 

CLUSTAL W and the MEGA 7 program to Phylogenetic tree analysis. This isolate was found belonging to the 

Providencia species with homology level ( 99%) as depicted in the Phylogenetic tree analysis (Figure.1). It was 

identified as Providecia vermicola by alignment our sequence to sequence of Providencia vermicola strain 

CICRSPBB. This strain was isolated from the rhizosphere of plant irrigated with waste water from Farm at Taif, 

Saudi Arabia. The bacterial strain, Providencia vermicola BGRW which was isolated in the present study 

appears to be a promising organism to meet the need for the production of original selenium nanoparticles based 

wound ointment, anticancer drug and as a better coating agent in medical instruments, greater studies are 

requirment to quantify these observed effects of SeNPs. 
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Figure 1: Phylogenetic tree based on 16s rRNA gene sequence comparisons of Providencia vermicola BGRW, 

using neighbor joining tree method, maximum sequence difference=0.5. 

3. 3. Characterization of selenium nanoparticles  

3.3.1. Visualization of biogenic selenium nanoparticles color 

Visual observation of the culture incubation with selenium dioxide at 37º C for 24 h in dark showed a color 

change from light yellow to bright red indicating the formation of red-colored elemental Se (Figure. 2, tube.1), 

which are the characteristic of selenium nanoparticles formation [25]. This red color due to the excitation of 

surface plasmon vibrations of selenium nanoparticles provides a convenient spectroscopic signature of their 

production [25] whereas no color change could be demonstrated in a solution of selenium dioxide as a negative 

control (Figure. 2, tube.2). Many related studies revealed that metal reduction and precipitation might involve a 

complex of either reductases, capping proteins, quinones or cytochromes, electron shuttles or phytochelatins that 

are known to reduce and stabilize various metal, metal oxides and metal sulfide nanoparticles [25]. 

 

Figure 2: A photograph showing the red selenium nanoparticles in a tube (1) and no color change at negative 

control in a tube (2). 
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3. 3. 2. UV-Vis spectrophotometer for selenium nanoparticles  

For SeNPs spectra measurements, the UV-Vis spectrum illustrated shows an absorption peak in the region of 

200-800 nm for the cell filtrate from the culture of Providencia vermicola BGRW strain which had 1mM of 

SeO2 as a source of selenium ions, a well-defined absorption peak at ca. 295 nm appears in (Figure. 3) that 

corresponds to the wavelength of the surface plasmon resonance (SPR) of selenium nanoparticles [64].Various 

reports have confirmed that the resonance peak of selenium nanoparticles appears around this region, but the 

accurate position depends on several factors such as particle's size, shape, and material composition, as well as 

the local environment [65]. There were a lot of study about SeNPs formation have various absorption peaks in 

UV-vis spectra indicate to a presence of SeNPs. In these studies, the peaks appeared at 290 nm [66], strong 

absorption band located at 265 nm [41, 67] and the peak was seen at around 263 nm [32]. While the UV-Visible 

absorption spectra of SeNPs recovered from the culture broth gave a characteristic peak at 590 nm which 

corresponds to the large particle size of 182.8 ± 33.2 nm [68]. 

 

Figure 3: UV-Vis spectra recorded of selenium nanoparticles produced by Providencia vermicola BGRW, The 

absorption spectrum of SeNPs exhibited a strong peak at 295 nm and the observation of such band is assigned to 

surface plasmon resonance of the particles and UV-spectra of cell-free supernatant was also represented as a 

control. 

3.3.3. Transmission Electron Microscopy (TEM) measurements of selenium nanoparticles 

TEM images of the selenium nanoparticles synthesized by Providencia vermicola BGRW and the particle size 

distribution histogram of selenium particles were done. Figure 4 demonstrated the related particle size histogram 

obtained after measuring 78 particles from culture of Providencia vermicola BGRW with 1mM SeO2 at pH 7.0 

under 37 ºC incubation for 24 h, the particles ranged in size approximately from 3 to 50 nm in diameter and 

possessed an average size of 28 nm (±SD) under aerobically condition. It has been reported that the particle size 

is decreased in presence of O2, it is obvious that oxygen will promote oxidation of selenium as a consequence of 

which the redox step becomes slower producing smaller selenium nanoparticles [69]. Also, transmission 

electron micrographs of the prepared selenium nanoparticles (Figure. 4) showed that the particles were 

hexagonal monodispersed nanoparticles, the nanoparticles were not in direct touch even within the aggregates, 
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point out to stabilization by a capping protein/peptide. Many of the previous studies showed selenium 

nanoparticles synthesis by bacteria but the disadvantage was large-size of particles which were SeNPs with100 

to 550 nm, with an average size of 245 nm were produced [41], 50 to 400 nm spherical SeNPs [70], 

Lactobacillus acidophilus produced 50-500nm SeNPs, Bifidobacterium sp. produced 400-500 nm SeNPs and 

Klebsiella pneumoniae produced 200-300nm SeNPs [71] comparing with small size were obtained by plant 

extract like Dried Vitis vinifera (Raisin) Extract produced. 

 

Figure 4: TEM image and size distribution histogram of the selenium nanoparticles produced by the reaction of 

1 mM aqueous SeO2 solution with bacteria Providencia vermicola BGRW culture at 37º C and pH 7.0 incubate 

for 24 h. 

3.3.4. X-Ray Diffraction (XRD) analysis of selenium nanoparticles  

X-ray diffraction is generally applied to a certain chemical arrangement and crystal design of an objective and it 

can be used for exposing the presence of SeNPs. The X-ray diffraction pattern obtained for the selenium 

nanoparticles that synthesized by Providencia vermicola BGRW is shown in Figure 5. Indexing process of 

powder diffraction pattern is done and Miller Indices (h k l) to each peak was assigned as shown in Figure 5, the 

XRD pattern exhibited identical diffraction peaks corresponding to the [(03), (065) and (1096) appearing at 

65.8043º ] ,[ (01) , (085) and (0567) appearing at 58.2º ] , [(00), (001) and (0848) appearing at 23.4 62º ] and  

[(00), (027) and (0601) appearing at 28.3438º , 33.0 54º , 45. 469º , 4 . 3599º] of metal selenium, indicates that 

the precipitate was composed of pure crystalline selenium. An overwhelmingly strong diffraction peaks located 

at 65.8043 is ascribed to the (03), (065) and (1096) facets of face-centered cubic metal selenium structures, 

while diffraction peaks of other facets are much strong facets of face-centered hexagonal metal selenium 

structures, few cubically shaped particles were also presence. These observations indicate that the produced 

selenium nanoparticles by bacteria Providencia vermicola BGRW are a mixture of different selenium phases. 

Nearly similar to results were obtained by [72] whereas, the diffraction peaks of hexagonal SeNPs were at 2θ = 

23.9, 30.0, 41.7, 44.0, 45.7, 52.0, 56.4, 62.2, 65.5 and 68.4 were for the (100), (101), (110), (102), (111), (201), 

(003), (202), (210) and (211) reflections of the pure hexagonal phase of selenium crystals. Also, there were 
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many studies produced other nature of crystalline with other diffraction peaks whereas the crystalline nature of 

the selenium nanoballs was reported by [73] using X-ray diffraction shows broad diffraction peaks at lower 

angles, hence confirming the amorphous/nanocrystalline nature of the sample. However, the XRD analysis for 

the extracellular red elemental selenium indicated three intense peaks in the whole spectrum of 2θ values 

ranging from 5 to 80, the diffractions peak at 2θ value of 23.780, 29.797 and 43.878 can be indexed to the (100), 

(101) and (102) planes of the face-centered cubic (fcc) red elemental selenium, respectively [36, 74] . 

 

Figure 5: Representative XRD pattern of selenium nanoparticles synthesized by the reaction of BGRW culture 

with 1 mM SeO2 solution at pH 7.0. 

3.3.5. Fourier Transforms Infrared Spectroscopy (FTIR) analysis of selenium nanoparticles  

Biosynthesized SeNPs that produced by BGRW were characterized by using (ATR-FTIR). The ATR-FTIR 

spectrum (Figure. 6) of bacterial crude protein and that bound to the SeNPs surface showed obvious changes in 

both the shape and the peak position suggesting the changes in the secondary structure of protein after 

nanoparticle formation. FTIR results revealed that secondary structure of proteins has been affected as a 

consequence of binding with SeNPs. ATR- FTIR spectra of SeNPs (Figure. 6) showed that several peaks 

appeared at 544, 618, 703, 1105, 1218, 1275, 1397, 1456, 1540, 1636, 3540, 3581, 3638, 3662 and 3774 cm-1, 

are characteristic of proteins. The strong broad peaks at 3540, 3581, 3638, 3662 and 3774 cm-1  can be assigned 

to hydroxyl (OH) group and correspond to the amine group (NH stretching). The peak at 1456 and 1540 cm-1  

are associated with CH stretching [75]. The bands at 1105 and 1397 cm-1  may be attributed to C-O stretching 

mode [76]. The peak at 703 cm-1 likely due to the presence of aromatic compounds [77]. Furthermore, the FTIR 

spectrum revealed two bands at 1636 and 1540 cm-1 corresponding to the amide I and II bands of proteins, 

respectively. The Amide I band is primarily a C=O stretching mode and the Amide II band is a combination of 

N-H in-plane bending and C-N stretching. The more complex Amide III band is located near 1397 cm-1. The 

amide groups indicating the presence of enzymes were responsible for the reduction synthesis and stabilization 

of the metal ions [78]. This result indicates that molecules with these functional groups are associated with the 

NPs [79]. With the overall observations, it can be concluded that the proteins might have formed a capping 
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agent over the SeNPs, which may response for their stabilization [30]. Therefore, the produced SeNPs persisted 

for some months in liquid suspension. The peak at 618 cm-1 correspond to C−S sulfide stretching vibration, 

similarly the peak at 544 cm-1 showed S−S (polysulfide) stretching vibration indicating the frequent appearance 

of thiols and its substituted compounds constituting the backbone of the interacting protein. From the ATR-

FTIR spectra, an interaction between SeNPs and protein is further confirmed by the shift in CH (1556 cm-1 to 

1456 cm-1), CN (1634 cm-1 to 1636 cm-1), nitro compound (1401 cm-1 to 1397 cm-1), aromatic compound (626 

cm−1 to 618 cm−1) and OH (3640 cm-1 to 3638 cm-1). It is well known that free amine groups or cysteine 

residues the protein can bind to selenium nanoparticles that lead to the stabilization of SeNPs by surface-bound 

protein is a possibility were acting as natural capping agents, preventing agglomeration and promising medical 

activity. It is, therefore, inferable that the bio-reduction property of Providencia vermicola BGRW refer to its 

protein. Notably, the interaction between Se nanoparticles and protein is simply electrostatic between Se atoms 

and the NH, C =O groups [80]. In particular, Lenz and co-workers [81]  showed that selenium nanoparticles can 

be bounded with a variety of high-affinity proteins. In addition, proteins and other biomolecules such as 

polysaccharides and fatty acid may play a key role in controlling SeNPs size and morphology [82]. 

 

Figure 6: A representative ATR-FTIR spectrum pattern of dried powder of selenium nanoparticles synthesized 

by BGRW culture. 

3.4. Antimicrobial activity of selenium nanoparticles 

3.4.1. Determination of the inhibition zone of SeNPs at different concentrations 

Different concentrations of biogenic SeNPs produced by Providencia vermicola BGRW were tested for their 

potential growth inhibition activity against various 14 pathogens by well diffusion method include these 

organisms Staphylococcus aureus, Bacillus cereus, MRSA (Methicillin-resistant Staphylococcus aureus) , 



American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2018) Volume 45, No  1, pp 135-170 

149 

Escherichia coli, Pseudomonas aeruginosa, Enterobacter sp. , Enterococcus sp., Proteus mirabilis, Klebsiella 

sp., Streptococcus pneumoniae, Streptococcus agalactiae, Salmonella enteritidis, Candida albicans and 

Stenotrophomonas maltophilia. Table 1 shows the diameter of the inhibition zone in mm of all pathogens. The 

highest antimicrobial activity of 100 μl SeNPs was seen in the order of S. aureus and B. cereus (29mm) (Figure. 

7, B and D) followed by MRSA (27 mm) (Figure. 7, A), S. agalactiae (25 mm) and E. coli (13 mm) (Figure. 7, 

C). However, apart from E. coli SeNPs did not show a significant effect on the all bacterial growth of Gram-

negative bacteria. The increases of SeNPs concentration lead to increase of diameter of inhibition zone, when 

the SeNPs concentrations were increased from 100μl (10μg) to 150μl (15μg), the diameter of inhibition zones 

were increased 14%, 17%, 24%, 31% and 37% against S. aureus, B. cereus, S. agalactaie, E.coli and MRSA, 

respectively. On the other hand, sub inhibitory concentration of SeNPs between 2.5-10 μg/mL had no 

antibacterial effect on tested strains [83]. However, sub-inhibitory concentration of SeNPs (2.5-10 μg/mL) were 

reported to have a stimulating effect on the growth of Aspergillus niger [39]. 

Table 1: Diameter of inhibition zone (mm) of different concentrations of SeNPs against various pathogens 

 SeNPs Antibiotic 
Pathogens 100 μl 

(10μg) 
150 μl 
(15μg) 

Gentamycin 
(GN)10 

Ampicillin 
(AMP)25 

Norfloxacin 
(NX)10 

Sulfamethoxazole 
(SXT)25 

Penicillin 
V 

(PNV)10 

Penicillin G 
(PNG)10 

Staphylococcus 
aureus 

 

29 33 18 22 38 22 - - 

Bacillus cereus 
 

29 34 21 31 43 33 - 8 

Streptococcus 
agalactiae 

 

25 31 26 21 21 28 - - 

MRSA 27 37 28 14 - - - - 

Escherichia coli 
 

13 17 - - 29 25 - - 

 

However, selenium nanoparticles have been reported to inhibit 95% of S. aureus and E. coli growth at high 

concentration (620μg/mL) (Alquthami, 2012). Tran and Webster [34] affirm that the SeNPs (chemically 

synthesized, with a range of 40-100 nm) showed inhibition effect against S. aureus. In the present study six 

antibiotics were used; sulfamethoxazole (SXT) 25, norfloxacin (NX) 10, gentamicin (GN) 10, ampicillin (AMP) 25, 

penicillin V (PNV) 10 and penicillin G (PNG) 10, to compare their inhibitory activity when combined with SeNPs 

against pathogenic bacteria which the SeNPs largest inhibition zone (29mm) of S. aureus, the largest zone was 

for sulfamethoxazole (22mm) followed by ampicillin (22mm), gentamicin (18mm), penicillin G (0 mm) and 

penicillin V (0 mm). While the SeNPs inhibition zone against MRSA was (27mm), the highest of all antibiotics 

which were used except gentamicin (28mm). The SeNPs inhibition zone against B. cereus was (29mm), the 

highest of gentamicin (21mm), penicillin G (8 mm) and penicillin V (0 mm). At S. agalactiae, the SeNPs 

inhibition zone was the highest of norfloxacin (21mm), ampicillin (21mm), penicillin G (0 mm) and penicillin V 

(0 mm). At last, SeNPs inhibition zone against E. coli (13mm) was an effective contrast of gentamicin, 
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ampicillin and penicillin which was resistant to them. (Table.1). Little information about the inhibition effect of 

SeNPs on the bacteria is available. From our results, biogenic SeNPs, therefore, appears to be reliable 

candidates for safe medical applications, to inhibit the growth of clinical isolates of B. cereus, MRSA, S. aureus, 

S. agalactaie and E.coli. However, in the present study, the biosynthesized SeNPs at concentrations of 10 μg 

displayed strong effect on the growth of all Gram- positive tested bacteria, including S. aureus, B. cereus, MRSA 

and S. agalactiae, in addition to a moderate effect on E. coli from Gram-negative bacteria. 

 

Figure 7: Antibacterial activity of different concentrations 100μl (10μg) and 150μl (15μg) of SeNPs against 

MRSA (A), Bacillus cereus (B), Escherichia coli (C) and Staphylococcus aureus (D). 

3.4.2. Synergistic effect of SeNPs with antibiotic on antibacterial activity 

The combination of selenium nanoparticles (SeNPs) and an antibiotic can synergistically inhibit bacterial 

pathogenic bacteria such as E. coli, S. aureus, B. cereus, MRSA and S. agalactiae. However, the mechanism for 

the synergistic activity is not known. This study chooses six of antibiotics: penicillin V (PNV), 

sulfamethoxazole (SXT), norfloxacin (NX), gentamicin (GN), ampicillin (AMP) and penicillin G (PNG) to 

explore their synergistic mechanism when combined with SeNPs against pathogenic bacteria. The combination 

of SeNPs with different antibiotics was investigated against five pathogenic bacteria using the disc diffusion 

method. The diameter of the inhibition zone in mm around the different antibiotic disks with and without SeNPs 

was determined as shown in (Table.2). The highest increase in fold area was found for Penicillin G in presence 

of SeNPs against B. cereus (387.5%), followed by E. coli, S. aureus, MRSA and S. agalactiae (100%). Likewise, 

for penicillin V, the increase fold areas were (100%) against all pathogens (Figure. 8, H). Similar for ampicillin, 

the increase fold area was (61%), whereas highest fold area observed against E. coli (100%), followed by S. 

aureus (90.9%), MRSA (71.4%) at (Fig.8, G), S. agalactiae (24%) and B. cereus (18.8%) (Figure. 8, I). The 

increase in fold area was also found the maximum for sulfamethoxazole combined with SeNPs against MRSA at 

(Figure. 8, F) and E. coli (100%), followed by S. agalactiae (14.3%) (Figure. 8, A) and B. cereus (8.6%). 

gentamicin was also enhanced by SeNPs and the highest increase in fold area was found against E. coli (100%), 

followed by S. agalactiae (30.7%) (Figure. 8, D), B. cereus (23.8%) (Figure. 8, C), MRSA (21.4%) (Figure. 8, E) 

and S. aureus (11.1%). At last, the highest increase in fold area of norfloxacin antibiotic was found against E. 

coli (13.8%), followed by MRSA (11.1%), B. cereus (9.3%) (Figure. 8, B) and S. aureus (5.3%). It indicated that 

the combination of antibiotics and selenium nanoparticles could increase the antibiotic efficacy against resistant 
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pathogens. However, the greatest enhancement was noticed with penicillin G (157.5%) and penicillin V (100%), 

followed by ampicillin (61%), sulfamethoxazole (44.6%), gentamicin (37.4%) and norfloxacin (7.9%). The 

enhancement of antibacterial activity could be due to the antibiotic-nanoparticle combination and not to the 

effect of NPs itself. It was found that the nanoparticles enhanced the reaction rates of antibiotics in a synergistic 

mode as well as in its own way on different kinds of pathogens [84]. The probable mechanism responsible in 

enhanced antibacterial activity of antibiotics with selenium nanoparticles may be attributed to the bonding 

reaction between nanoparticles and antibiotics, then the antibiotic-selenium nanoparticle combination may 

attach on the cell membrane result in cell wall lysis, which was followed by the entry of SeNPs-antibiotic 

combination into the cell and may result in the DNA unwinding leads to cell death, the same mechanism 

suggested by [85] about bonding reaction between silver nanoparticles and antibiotics. It is worth mentioning 

that this is the first report about the combination of selenium nanoparticles and various antibiotics against S. 

aureus, MRSA, B. cereus, S. agalactiae and E.coli. Recently, [86] showed successfully designed highly stable 

antibacterial SeNPs agents (quercetin – acetylcholine-SeNPs), this complex showed efficient antibacterial and 

bactericidal activities against superbugs. Due to the presence of acetylcholine, whereas this complex shows the 

ability to combine with the acetylcholine receptor on the bacterial cell membrane and increase the permeability 

of cell membranes. This causes membrane disruption and leads to the leakage of the cytoplasm, allowing 

nanocomposites to subsequently invade bacterial cells and disrupt DNA structure. 

 

Figure 8: Digital Photograph of antibacterial activity of different antibiotic alone, selenium nanoparticles 

(SeNPs) and the combination of antibiotic with SeNPs against different pathogenic bacteria: (A&D) S. 

agalactiae, (B, C &I) B. cereus and (E, F, G & H) MRSA. The abbreviations: SXT= Sulfamethoxazole, NX= 

Norfloxacin, GM= Gentamicin, AMP= Ampicillin and PNV= Penicillin V. 
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Table 2: Diameter of inhibition zone (mm) of synergistic effect of SeNPs with various antibiotics 

Diameter of inhibition zone 
 

  
Norfloxacin (NX)10 
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Gram positive 
 

Staphylococcus aureus 
 

29 38 40 5.3% 22 42 90.9
% 

32 32 0% - 23 100% - 41 1
0
0
% 

18 20 11.1
% 

Bacillus cereus 29 43 47 9.3% 32 
 

38 
 

18.8
% 

35 38 8.6% - 25 100% 8 39 3
8
7
.
5
% 

21 26 23.8
% 

Streptococcus agalactiae 
 

25 21 21 0% 25 31 24% 28 32 14.3% - 23 100% - 25 1
0
0
% 

26 34 30.7
% 

MRSA 27 27 30 11.1% 14 
 

24 71.4
% 

- 18 100% - 21 100% - 23 1
0
0
% 

28 34 21.4
% 

Gram negative 
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Escherichia coli 13 29 33 1
3.
8
% 

- 7 100
% 

- 14 100
% 

- 15 100% 
 

- 12 1
0
0
% 

- 10 100% 

 
Overall synergistic antibacterial 

effect 
 

 
7.9% 

 
61% 

 
44.6% 

 
100% 

 
157.5% 

 
37.4% 

 

 

3.4.3. Determination the minimum inhibition concentration (MIC 90) of SeNPs 

SeNPs were added to Luria-Bertani (LB) medium to reach predesigned concentrations whereas each pathogen strain was exposed to 5, 10, 15, 20 or 25 μg/mL of SeNPs. 

After a day of incubation, 1ml of a medium was sampled, diluted and then cultured on Luria-Bertani (LB) agar plates. OD600 was also monitored for different concentrations 

of SeNPs with a treated pathogen, considering the OD600 value of SeNPs in Luria-Bertani (LB) medium as background, it was expected that we could estimate bacterial 

numbers and obtain MIC (Minimum inhibition concentration) value by subtracting background from each measurement. It was found that there was no OD600 additive 

relationship between SeNPs and bacteria. After SeNPs were added to the bacterial culture, bacterial cells attracted SeNPs. Thus, the OD600 reading that would normally be 

generated by this portion of SeNPs was absent. As a result, to determine bacterial numbers with little influence from the SeNPs, CFU by plate counting was likely to be the 

only accurate method, CFU data were converted to bacterial numbers per ml, this result compatible with [87] result. OD600 was also monitored for different concentrations 

of SeNPs with a treated pathogen, considering the OD600 value of SeNPs in Luria-Bertani (LB) medium as background, it was expected that we could estimate bacterial 

numbers and obtain MIC (Minimum inhibition concentration) value by subtracting background from each measurement. It was found that there was no OD600 additive 

relationship between SeNPs and bacteria. After SeNPs were added to the bacterial culture, bacterial cells attracted SeNPs. Thus, the OD600 reading that would normally be 

generated by this portion of SeNPs was absent. As a result, to determine bacterial numbers with little influence from the SeNPs, CFU by plate counting was likely to be the 

only accurate method, CFU data were converted to bacterial numbers per ml, this result compatible with [87] result. The presence of SeNPs clearly showed reducing the 

bacterial numbers, high concentrations of SeNPs have more of an inhibitory effect on S. aureus, B. cereus and E. coli bacterial growth as compared to low concentrations 

(Figure. 9). 
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Minimum inhibition concentration of 90 % from bacterial growth (MIC 90) of S.aureus, B. cereus and E. coli 

were investigated, the MIC 90 of S. aureus was at 10μg/mL of SeNPs and at 15μg/mL of B. cereus, while the 

MIC 90 of E. coli was at 20μg/mL of SeNPs. Gram-positive bacteria were found to be far more sensitive to 

lower concentrations of SeNPs compared to Gram-negative bacteria. After 24 h at S. aureus, a concentration of 

5μg/mL reduced cell populations by about 78% compared to control groups with no nanoparticles, high 

concentrations of nanoparticles (10μg/mL, 15μg/mL, 20μg/mL and 25μg/mL) also increased the number of dead 

cells as follow: 96%, 97%, 98% and 99%, respectively. Antibacterial activity was again attributed to increased 

oxidative stress and bacteria membrane interference. At B. cereus, a concentration of 5μg/mL reduced cell 

populations by about 62% compared to control groups with no nanoparticles, high concentrations of 

nanoparticles (10μg/mL, 15μg/mL, 20μg/mL and 25μg/mL) also increased the number of dead cells as follow: 

80%, 98%, 99% and 100%, respectively. At 25μg/mL, no growth of B. cereus was found that mean, this 

concentration was microbial bactericidal concentration (MBC) as shown in (Figure. 9), the strong antibacterial 

activities were observed at all SeNPs concentrations against B. cereus. 

     At E. coli, a concentration of 5μg/mL reduced cell populations by about 12% compared to control groups 

with no nanoparticles, high concentrations of nanoparticles (10μg/mL, 15μg/mL, 20μg/mL and 25μg/mL) also 

increased the number of dead cells as follow: 26%, 78%, 92% and 99%, respectively. These results confirmed 

that the Gram-positive bacteria were more sensitive to SeNPs compared to gram-negative bacteria. We used 25 

μg/ml sulfamethoxazole antibiotics as a control to compare the inhibition effect of SeNPs with it and the 

inhibition effects of S.aureus, B. cereus and E. coli were as follow: 95%, 96% and 98%, respectively as shown 

in (Figure. 9). 

 

Figure 9: The diagram shows the antimicrobial effect of SeNPs against three pathogens with different 

concentrations 0μg/mL, 10μg/mL, 15μg/mL, 20μg/mL and 25μg/mL to determine MIC 90, the growth of the 

tested strains was measured as CFU by plate counting method. 
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3.4.4. Scanning electron microscopy (SEM) to pathogens treated with selenium nanoparticles  

Additionally, images obtained using scanning electron microscope (SEM) helped in a detailed investigation of 

the topological changes in bacterial shape. Upon interaction with SeNPs, the bacterial membrane surface 

potential was weakened and neutralized, resulting in increase in surface tension. At high concentration of 

SeNPs, the interactions result in surface tension change which leads to the membrane depolarization at the point 

of contact. As a result, bacterial membrane show abnormal textures like membrane rupture, membrane blebs, the 

ruptured cells often found in aggregates or clumps (Figures. 10, 11 and 12). Morphology and structure of Gram-

positive strain S. aureus treated with SeNPs (Figure. 10, B) and untreated cells (Figure. 10, A) were observed 

using SEM imaging in order to study the mechanisms of the antibacterial interactions. The following 

concentration was selected because they display strong antibacterial effects: 25 μg/mL SeNPs, samples were 

withdrawn and fixed for 6 h. Untreated cells were typically cocci-shape bacteria whereas, treated cells with 

SeNPs showed damage to the cell wall and clumps of cells. In B. cereus cells, untreated cells (Figure. 11, A) 

were typically rod-shaped bacteria whereas, treated cells with SeNPs (Figure. 11, B) for 6 h showed damage to 

cell wall and aggregates of bacterial cells. 

Morphology and structure of Escherichia coli as gram-negative bacteria, untreated and treated cells with SeNPs 

were observed, untreated cells were typically rod-shaped bacteria (Figure. 12, A) whereas, treated cells with 

SeNPs (Figure. 12, B) clearly showed membrane rupture, membrane blebs, clumps cells. These results are in 

parallel with the results obtained by [88]. 

 

Figure 10: Visualization of SeNPs treated S. aureus cells surface by SEM, (A) control (without NPs treated 

cells) and (B) showing membrane clumping and fusion in SeNPs treated cells. 

 

Figure 11: Visualization of SeNPs treated B. cereus cell surface by SEM, (A) control (without NPs treated 

cells) and (B) showing membrane clumping and fusion in SeNPs treated cells. 
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Figure 12: Visualization of SeNPs treated E. coli cell surface by SEM, (A) control (without NPs treated cells) 

and (B) showing membrane damaging, clumping, fusion and blebs in SeNPs treated cells. 

3.4.5. The antibiofilm effect of the SeNPs 

According to the report of the National Institutes of Health and Center of Disease control, about ~65–80 % 

infections occurred by biofilm forming microbes [89]. The antibiofilm effect of the SeNPs against different 

pathogens which have ability to establish biofilms; the Gram-positive tested pathogens were (S. aureus and B. 

cereus) and the Gram-negative tested pathogens were (E. coli, Proteus sp., Pseudomonas aeruginosa and 

Salmonella enteritidis) were investigated in vitro using polystyrene microtiter plate technique (Table.3). In the 

absence of SeNPs, all strains were strong biofilm producers (+++). 

The biofilm forming ability of all tested strains changed from to incorporate 4μg/mL of SeNPs in the incubation 

medium. Remarkably, all strains became moderate biofilm producers (++) in presence of 4μg/mL of SeNPs. By 

increasing the SeNPs concentration to 8μg/mL, E.coli, Sal. enteritidis and S. aureus changed to be weak biofilm 

producers (+), while B. cereus, Proteus sp. and P. aeruginosa remained in the categories of moderate biofilm. 

The obtained results demonstrated that the antibiofilm concentration of SeNPs against Sal. enteritidis and B. 

cereus was 12μg/mL, the antibiofilm concentration of SeNPs against S. aureus and E. coli was 16μg/mL, while 

the antibiofilm concentration of SeNPs against Proteus sp. and P. aeruginosa was 18μg/mL. SeNPs showed a 

significant antibiofilm effect of Gram-negative and Gram-negative bacteria. The increases of SeNPs 

concentration lead to increase of inhibition effect of biofilm formation, the biofilm inhibition effects increased 

67%, 80%, 88% and 97% against S. aureus, when SeNPs concentrations were 4, 8, 12 and 16μg/mL, 

respectively. The biofilm inhibition effects increased 13%, 31%, 93% and 97% against B. cereus, when SeNPs 

concentrations were 4, 8, 12 and 16μg/mL, respectively. 

The biofilm inhibition effects against Gram-negative bacteria increased 28%, 70%, 71%, 97% and 100% against 

E. coli, when SeNPs concentrations were 4, 8, 12, 16 and 18μg/mL, respectively. While the biofilm inhibition 

effects of Proteus sp. increased 31%, 49%, 53%, 66% and 78%, when SeNPs concentrations were 4, 8, 12, 16 

and 18μg/mL, respectively. However, P. aeruginosa lost 60%, 64%, 70%, 75% and 86% but Sal. enteritidis lost 

58%, 64%, 88%, 93% and 97% of their ability to biofilm formation, when SeNPs concentrations were 4, 8, 12, 
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16 and 18μg/mL, respectively. The first study on the antibiofilm effect of SeNPs (with the particle-size range of 

80-220 nm) against S. aureus, P. aeruginosa, and P. mirabilis was carried out by [64]. 

The SeNPs (with particle-size average 28 nm) produced in the present study has sharp effect as an antibiofilm 

agent against S. aureus, B. cereus E. coli and Sal. enteritidis where they lost their ability to form biofilm above 

(95%). At recent study, the SeNPs were able to inhibit biofilm formation and also to disaggregate the mature 

glycocalyx in both P. aeruginosa and Candida sp. and reported that the biogenic SeNPs achieved much stronger 

antibiofilm effects than chemically synthetic selenium nanoparticles [90]. 

3.4.6. The ability of SeNPs to remove the established biofilm 

The effect of SeNPs on removing the established biofilm (after 24 h) was studied in microtiter plates against the 

studied pathogens which had the ability to establish biofilms; the Gram-positive tested pathogens were (S. 

aureus, B. cereus) and the Gram-negative tested pathogens were (E. coli, Proteus sp., P. aeruginosa and Sal. 

enteritidis) were investigated in vitro. Different SeNPs concentrations from 20 (the antibiofilm concentration) 

up to 32 μg/mL were added during washing steps (Table.4). Washing with PBS containing SeNPs up to 

20μg/mL showed a slight effect as a removing agent against the established biofilm developed by all tested 

strains whereas the strong biofilm turned to moderate biofilm except E.coli whereas, at 24μg/mL, the established 

biofilm was moderate. Incorporation of 32μg/mL of SeNPs showed a stronger effect in removing agent against 

all studied bacteria whereas all established biofilm became weak biofilms. SeNPs are known to have killing 

effect against S. aureus [34]. This could provide an interpretation for the slight removing effect of SeNPs 

obtained in the present study, where the dead cells could lose their ability to adhere to the surviving cells in the 

polysaccharide matrix of the established biofilm resulting in the dispersal of a subpopulation of surviving cells 

[91]. 

The obtained results indicated that the SeNPs produced by Providencia vermicola BGRW under the studied 

conditions had slight ability to remove established biofilm of different bacteria. In another study [92] reported 

that SeNPs completely eradicated the biofilm structure of E. coli at a concentration of 60μg/L. At the same 

concentration, SeNPs destroyed most part of biofilms cells of both P. aeruginosa and S. aureus, in contrast to 

growth control, formed for the most part of viable cells. At this point, the last study by [90] resulted that the P. 

aeruginosa biofilm was highly susceptible to SeNPs induced disaggregation, resulting in 0% degradation in the 

presence of 50 μg/ml SeNPs, confirming that this strain is more susceptible to SeNPs than the other strains.  

The exposure of the other P. aeruginosa 50–100 μg/ml SeNPs resulted in 50–70% biofilm dissolution and this 

did not increase at higher SeNPs concentrations.The biogenic SeNPs eliminated 45–60% of the yeast biofilms at 

the lowest SeNPs doses (50–100 μg/ml) and there was no improvement at higher doses. 

According to results, selenium nanoparticles did not have the ability to detach elute the entire established 

biofilms of S. aureus, B. cereus, E. coli, Proteus sp., P. aeruginosa and Sal. enteritidis, at high concentrations 

and just changed them to weak biofilms. 
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Table 3: Antibiofilm effect of the biosynthesized selenium nanoparticles (SeNPs) against some pathogens 

Pathogens SeNPs concentration (μg/ml) 
 

0 4 8 12 16 
 

18 NC 

Gram positive 
 

Staphylococcus aureus OD570\ 
 

0.985 0.321 0.199 0.118 0.02 0.05 0.116 

Strong of biofilm 
 

+++ ++ + + - -  

Percent of inhibition 
 

 67% 80% 88% 97% 95%  

Bacillus cereus OD570 
 

0.450 0.390 0.310 0.033 0.015 0.02 0.105 

Strong of biofilm 
 

+++ ++ ++ - - -  

Percent of inhibition 
 

 13% 31% 93% 97% 95%  

Gram negative 
 

Escherichia coli OD570 
 

0.532 0.382 0.162 0.154 0.015 0.00 0.116 

Strong of biofilm 
 

+++ ++ + + - -  

Percent of inhibition 
 

 28% 70% 71% 97% 100%  

Proteus sp. OD570 
 

1.301 0.897 0.658 0.608 0.446 0.25 0.27 

Strong of biofilm 
 

+++ ++ ++ ++ + -  

Percent of inhibition 
 

 31% 49% 53% 66% 78%  

Pseudomonas aeruginosa OD570 
 

1.503 0.602 0.541 0.450 0.38 0.203 0.27 

Strong of biofilm 
 

+++ ++ ++ + + -  

Percent of inhibition 
 

 60% 64% 70% 75% 86%  

Salmonella enteritidis OD570 
 

0.603 0.249 0.22 0.067 0.045 0.018 0.105 

Strong of biofilm 
 

+++ ++ + - - -  

Percent of inhibition 
 

 58% 64% 88% 93% 97%  

 

(NC) negative control; (-) No; (+) weak; (++) moderate; (+++) strong biofilm producer 

3.4.7. Synergistic effect of SeNPs combination with antibiotic on antibiofilm activity 

The combination of selenium nanoparticles (SeNPs) and an antibiotic may synergistically inhibit biofilm 
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formation of pathogenic bacteria such as S. aureus, B. cereus, E. coli, Proteus sp., P. aeruginosa and Sal. 

enteritidis. In this study amoxicillin (AMC) was chosen to explore synergistic effect when combined with 

SeNPs against bacterial biofilm formation. The combination of SeNPs with antibiotic was investigated against 

six bacterial biofilms using the polystyrene microtiter plate technique (Table.5). In the absence of SeNPs and 

Amoxicillin, all strains were strong biofilm producers (+++). 

The biofilm inhibition effect was analyzed in presence of different concentrations (7.5, 10, 12.5, 15, 17.5, 20 

and 25μg/ml) of SeNPs with the same concentrations (7.5, 10, 12.5, 15, 17.5, 20 and 25μg/ml) of AMC that 

means we used (15, 20, 25, 30, 35, 40 and 50μg/ml) concentrations of 1(SeNPs):1(AMC) 

First, the effect of amoxicillin on biofilm forming ability was determined to comparing this antibiofilm activity 

with the synergistic activity of the combination of SeNPs and amoxicillin (Table.5). The biofilm forming ability 

of all tested strains changed after the incorporation of 15μg/mL AMC in the incubation medium. Remarkably, 

all strains became moderate biofilm producers (++) as a result of treatment with 15μg/mL AMC except Sal. 

enteritidis which became weak biofilm-producers (+). The obtained results demonstrated that the antibiofilm 

concentration of AMC against Sal. enteritidis and Proteus sp. was 25μg/mL, the antibiofilm concentration of 

AMC against S. aureus, E. coli, Proteus sp. and P. aeruginosa did not appear even to 50μg/mL. AMC did not 

show a significant antibiofilm effect of S. aureus, E. coli, Proteus sp. and P. aeruginosa. By increasing the 

AMC concentration to 35μg/mL, S. aureus, Proteus sp. and P. aeruginosa changed to be weak biofilm-producer 

(+) while E. coli still in the categories of moderate biofilm and change to weak biofilm at 40μg/mL. Biofilm 

formation was not significantly reduced in the case of antibiotic alone.The biofilm forming ability of all tested 

strains changed clearly when the combination of selenium nanoparticles and amoxicillin were used (Table.5). 

The biofilm forming ability changed from to incorporate 15μg/mL ( 7.5μg/mL of AMC and 7.5μg/mL of 

SeNPs). Remarkably, S. aureus and E.coli strains did not produce biofilms (-) that means the antibiofilm effect 

was synergistically inhibited by added ( 7.5μg/mL of AMC and 7.5μg/mL of SeNPs) comparing to high 

concentration of AMC which need to changed S. aureus and E.coli biofilms just to weak biofilm procedure, 

meanwhile B. cereus , Sal. enteritidis and Proteus sp. strains became no biofilm-producers as a result of 

treatment with 20μg/mL(10μg/mL of AMC and 10μg/mL of SeNPs) but the antibiofilm concentration at P. 

aeruginosa was 25μg/mL(12.5μg/mL of AMC and 12.5μg/mL of SeNPs). The previous results about the 

antibiofilm concentration of SeNPs against Sal. enteritidis and B. cereus was 12μg/mL, the antibiofilm 

concentration of SeNPs against S. aureus and E. coli was 16μg/mL, while the antibiofilm concentration of 

SeNPs against Proteus sp. and P. aeruginosa was 18μg/mL, these antibiofilm concentrations of SeNPs without 

any addition confirm to us that the antibiofilm effect of SeNPs and AMC did not a result of the effect each one 

of them individually. The enhancement of antibiofilm activity could be due to the antibiotic-nanoparticle 

combination and not to the effect of NPs itself. These are encouraging results, as it may be possible to achieve 

an effective anti-biofilm effect at lower antibiotic concentrations. Therefore, SeNPs and their combination with 

antibiotic could be used as an anti-biofilm agent against bacterial biofilms. At similar study on another type of 

nanoparticles [93] reported that combinations of Ag-NPs and antibiotics led to an increase in inhibitory effect on 

biofilm formation with different degrees, yet, generally showed a greater inhibitory activity than AgNPs or 

antibiotic alone. 
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Table 4: Biofilm removing ability of the biosynthesized SeNPs against some pathogens 

Pathogens SeNPs concentration (μg/ml) 
 

0 20 24 28 32 
 

NC 

Gram positive 
 

Staphylococcus aureus OD570 
 

0.985 0.370 0.358 0.306 0.457 0.24 

Strong of 
biofilm 

 

+++ ++ + + +  

Bacillus cereus OD570 
 

0.592 0.327 0.297 0.232 0.244 0.13 

Strong of 
biofilm 

 

+++ ++ ++ + +  

Gram negative 
 

Escherichia coli OD570 
 

0.653 0.571 0.362 0.319 0.260 0.126 

Strong of 
biofilm 

 

+++ +++ ++ ++ +  

Proteus sp. OD570 
 

1.301 0.235 0.147 0.251 0.256 0.231 

Strong of 
biofilm 

 

+++ ++ ++ ++ +  

Pseudomonas aeruginosa OD570 
 

1.503 0.368 0.358 0.303 0.245 0.283 

Strong of 
biofilm 

 

+++ ++ ++ + +  

Salmonella enteritidis OD570 
 

0.603 0.390 0.350 0.329 0.265 0.165 

Strong of 
biofilm 

 

+++ ++ ++ + +  

4. Conclusion 

In the present, all tested antibiotics showed synergistic inhibition against the growth of the pathogenic bacteria. 

The TEM images showed damage in the cell wall of the tested microbes resulting the death of cells. The MIC 90 

of SeNPs was 10μg/mL, 15μg/mL and 20μg/mL for S. aureus, B. cereus and E. coli respectively. The 

antibiofilm concentration of SeNPs was 12μg/mL against Sal. enteritidis and B. cereus, 16μg/mL against S. 

aureus and E. coli while the antibiofilm concentration was 18μg/mL against Proteus sp. and P. aeruginosa. The 

concentration of 24μg/mL showed a slight effect on removing the established biofilm. The antibiofilm effect of 

the combination of SeNPs with amoxicillin showed a synergistic effect at a lower than the antibiotic or SeNPs 

minimum antibiofilm concentrations. 
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Table 5: OD570 values of synergistic effect of the biosynthesized SeNPs with amoxicillin against some pathogens biofilm 

Biofilm 
type 

NC PC 15μg/mL  of  20μg/mL of 25μg/mL of 30μg/mL of 35μg/mL 40μg/mL 50μg/mL 

A
M

C
  

A
M

C
  +SeN

Ps 

A
M

C
  

A
M

C
  +SeN

Ps 

A
M

C
  

A
M

C
  +SeN

Ps 

A
M

C
  

A
M

C
  +SeN

Ps 

A
M

C
  

A
M

C
  +SeN

Ps 

A
M

C
  

A
M

C
  +SeN

Ps 

A
M

C
  

A
M

C
  +SeN

Ps 

Gram positive   

Staphylococcus 
aureus 

0.255 
 

0.989 
+++ 

0.548 
++ 

0.173 
- 

0.559 
++ 

0.156 
- 

0.583 
++ 

0.158 
- 

0.582 
++ 

0.132 
- 

0.439 
+ 

0.143 
- 

0.437 
+ 

0.201 
- 

0.423 
+ 

0.198 
- 

Bacillus 
cereus  

0.211 
 

0.83 
+++ 

0.460 
++ 

0.235 
+ 

0.463 
++ 

0.186 
- 

0.474 
++ 

0.161 
- 

0.472 
++ 

0.162 
- 

0.435 
+ 

0.131 
- 

0.358 
+ 

0.144 
- 

0.236 
+ 

0.201 
- 

Gram negative  

Escherichia 
coli 0.172 

 

0.753 
+++ 

0.534 
++ 

0.118 
- 

0.526 
++ 

0.129 
- 

0.523 
++ 

0.116 
- 

0.505 
++ 

0.128 
- 

0.388 
++ 

0.142 
- 

0.352 
+ 

0.143 
- 

0.346 
+ 

0.107 
- 

Proteus sp. 

0.164 
 

1.201 
+++ 

0.387 
++ 

0.328 
++ 

0.246 
+ 

0.152 
- 

0.143 
- 

0.142 
- 

0.138 
- 

0.160 
- 

0.158 
- 

0.123 
- 

0.099 
- 

0.098 
- 

0.143 
- 

0.112 
- 
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Pseudom
onas 

aeruginosa 

0.230 
 

1.589 
+++ 

0.632 
++ 

0.411 
+ 

0.519 
++ 

0.390 
+ 

0.511 
++ 

0.147 
- 

0.484 
++ 

0.143 
- 

0.452 
+ 

0.135 
- 

0.345 
+ 

0.127 
- 

0.334 
+ 

0.124 
- 

Salm
onella 

enteritidis 

0.175 
 

0.932 
+++ 

0.254 
+ 

0.233 
+ 

0.198 
+ 

0.153 
- 

0.166 
- 

0.142 
- 

0.063 
- 

0.151 
- 

0.057 
- 

0.123 
- 

0.025 
- 

0.053 
- 

0.019 
- 

0.073 
- 

 

(NC) negative control ;( PC) positive control; (-) No; (+) weak; (++) moderate; (+++) strong biofilm producer 
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