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Abstract 

In this work, we propose the approximated analytical solutions for two highly nonlinear problems using the 

homotopy perturbation method (HPM). We obtained approximations for a golf ball trajectory model and a 

Mercury orbit’s model. In addition, to enlarge the domain of convergence of the first case study, we apply the 

Laplace-Padé resummation method to the HPM series solution. For both case studies, we were able to obtain 

approximations in good agreement with numerical methods, depicting the basic nature of the trajectories of the 

phenomena. 

Keywords: Nonlinear differential equations; Homotopy;  perturbation method;   Resummation  method. 

1. Introduction 

Nonlinear ordinary differential equations (ODEs) models a wide variety of physical phenomena. This type of 

models can be solved using standard numerical methods. However, it is known that these algorithms can give 

some problems, such as numerical instabilities, oscillations, among others.  
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This means that the numerical solution may not correspond to the real solution of the original ODEs [16]. 

Therefore, analytical approximations can be an interesting alternative to the pure numerical solutions. Among 

the different methods that have been developed to obtain approximations for the solution of ODEs, the 

homotopy perturbation method is widely used, by its simplicity and accuracy of approximations. 

In this work, we propose HPM approximations for a golf ball trajectory model and a Mercury orbit’s model. 

Furthermore, to enlarge the domain of convergence of the first case study, we apply the Laplace-Padé after-

treatment to the HPM series solution. For the second case study, we propose an approximation in good 

agreement with numerical results. 

This paper is organized as follows. In Section 2, we provide a brief review of HPM method. Section 3 presents 

the basic concept of Laplace-Padé resummation method. In section 4, we introduce the mathematical models of 

both cases study and the HPM approximations. Next, Section 5 shows results and discusses our findings. 

Finally, a concluding remark is given in Section 6. 

2. Basic idea of HPM method 

In the HPM method [29, 30, 10, 9, 8, 31, 14, 12, 32, 5, 26, 27, 24, 1, 15, 25, 33, 23, 7] is considered that a non-

linear differential equation can be expressed as 

( ) ( ) = 0, where ,A u f r r− ∈Ω                                   (1) 

 with the boundary condition 

( , ) = 0, where ,uB u r
h
∂

∈Γ
∂  

                                       (2) 

 where A  is a general differential operator, ( )f r  is a known analytic function, B  is a boundary operator, and 

Γ  is the boundary of the domain Ω . The A  operator, generally, can be divided into two operators, L  and N
, where L  is the linear operator and N  is the nonlinear operator. Hence, (1) can be rewritten as 

( ) ( ) ( ) = 0.L u N u f r+ −                                              (3) 

Now, the homotopy function is 

0( , ) = (1 )[ ( ) ( )] ( ( ) ( ) ( )) = 0, [0,1],H v p p L v L u p L v N v f r p− − + + − ∈       (4) 

 where 0u  is the initial approximation of (3) which satisfies the boundary conditions and p  is known as the 

perturbation homotopy parameter. Analysing (4) can be concluded that 
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0( ,0) = ( ) ( ),H v L v L u−                                            (5) 

( ,1) = ( ) ( ) ( ).H v L v N v f r+ −                                                 (6) 

For 0p → , the homotopy map (4) is reduced to the linear problem (5) that possesses a trivial solution 0u . 

Moreover, for 1p → , the homotopy map (4) is transformed into the original nonlinear problem (6) that 

possesses the sought solution. Furthermore, we assume that the solution of (4) can be written as a power series 

of p  

0 1 2
0 1 2= .v p v p v p v+ + +                                               (7) 

Adjusting = 1p  results that the approximate solution for (1) is 

0 1 2
1

= = .lim
p

u v v v v
→

+ + +                                                (8) 

The series (8) is convergent on most cases, nevertheless, the convergence depends of the nonlinear operator N  

[29, 30, 10, 9, 8, 27]. 

3. Laplace-Padé Resummation Method 

Several approximate methods provide power series solutions (polynomial). Nevertheless, sometimes, this type 

of solutions lack of large domains of convergence. Therefore, Laplace-Padé [11, 21, 19, 13, 2, 18, 17, 22, 3, 28] 

method is used in literature to enlarge the domain of convergence of solutions. The procedure can be described 

as follows:   

1.  First, Laplace transformation is applied to power series (8).  

2.  Next, s  is substituted by 1/ t  in the resulting equation.  

3.  After that, we convert the transformed series into a meromorphic function by forming its Padé 

approximant of order [ / ]N M . N  and M  are arbitrarily chosen, but they should be of smaller 

value than the order of the power series. In this step, the Padé approximant extends the domain of the 

truncated series solution to obtain better accuracy and convergence.  

    4.  Then, t  is substituted by 1/ s .  

    5.  Finally, by using the inverse Laplace s  transformation, we obtain the modified approximate solution.  

 This process is known as the Laplace-Padé homotopy perturbation method (LPHPM). 
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4.  Cases Study 

 In this Section, we will describe and solve the governing equations for the trajectories of a golf ball and 

Mercury. 

4.1  Golf ball trajectory 

The dynamics for a golf ball trajectory (see Figure 1) can be modelled by the following system of ODEs [20]  

2 2

( ) = 0,
( ) = 0,

= ,
= / (2 ),

D L

D L

x K C x C y
y K C y C x g

x y
K A m

ν
ν

ν
ρ

′′ ′ ′+ +
′′ ′ ′+ − +

′ ′+

                                          (9) 

 where the prime denotes derivative with respect to t , ν  is the speed of the ball, x  and y  are the horizontal 

and vertical displacements, respectively; DC  and LC  are the drag and lift coefficients, g  is the gravitational 

acceleration, ρ  the air density, 2= ( / 2)A dπ , d  and m  are the cross-sectional area, diameter and mass of 

the ball, respectively. 

Now, the initial conditions of the problem are  

0

0

(0) = ,
(0) = ,
(0) = (0)cos( (0)),
(0) = (0)sin( (0)).

x X
y Y
x
y

ν θ
ν θ

′
′

                                                     (10) 

 where 0 0[ , ]X Y , (0)θ , and (0)ν  are the initial: position, angle, and speed of the ball, respectively. 

According to the HPM (relation (4)), we can construct the homotopy map as follows  

( )

( )

2 2
1 0 1 1 2 1 2

2 2
2 0 2 1 2 2 1

(1 )( ) ( ) = 0,

(1 )( ) ( ) = 0

D L

D L

p v x p v K v v C v C v

p v y p v K v v C v C v g

′′ ′ ′ ′ ′

′′ ′ ′ ′ ′

′′ ′′− − + + + +

′′ ′′− − + + + − +

    (11) 

 where the dots denote differentiation with respect to t , and the initial approximation is  
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1,0 0

2,0 0

( ) = ( ) = (0) (0) ,
( ) = ( ) = (0) (0) ,

v t x t x x t
v t y t y y t

′+

′+
                                          (12) 

 which satisfy the initial conditions of the problem. 

From (7), we assume that the solution of (11) can be written as a power series of p  as follows  

26

,
=0

= ( ), = 1,2i
i i j

j
v v p i∑                                                     (13) 

where ,i jv  ( , = 1,2,3,i j 2 ) are functions yet to be determined. 

Following the HPM protocol, we substitute (13) into (11), nonetheless, we observe that the square root term 

avoids the rearranging of the coefficients of p  powers as required by HPM. Then, we expand such term by 

Taylor with respect to p , resulting  

1,0 1,1 2,0 2,12 2 2 2 15
1 2 1,0 2,0 2 2

1,0 2,0

' ' ( ) ,
' '

v v v v
v v v v p p

v v
′ ′

+
+ ≈ + + + +

+
      (14) 

Now, it is possible to rearrange of the coefficients of p  powers, resulting 

1,1 0 2,0

0 1,0 1,1 1,1

1,2 0 2,1
2 2

2,0 2,1 0 1,0 1,1 2,0 0 1,0 1,1 0

0 1,1 2,0 2,1 1,0 0 1,2 1,2

2,1

= 0, (0) = 0, '(0) = 0,

( ) / / ( ) /
/ = 0, (0) = 0, '(0) = 0,

L

D

L

L L D

D D

v KC v
KC v v v

v KC v
KC v v KC v v v KC v v

KC v KC v v v v v

v g KC

ν
ν

ν
ν ν ν

ν ν

′′ ′+
′+

′′ ′+
′ ′ ′ ′ ′ ′ ′+ + +

′ ′ ′ ′+ +

′′ + +


0 2,0 0 1,0 2,1 2,1
2

2,2 0 1,1 2,0 2,1 1,0 0 2,0 2,1 0

1,0 1,1 2,0 0 0 2,1
2

1,0 1,1 0 2,2 2,2

= 0, (0) = 0, '(0) = 0,
/ ( ) /

/
( ) / = 0, (0) = 0, '(0) = 0,

D L

L L D

D D

L

v KC v v v
v KC v KC v v v KC v v

KC v v v KC v
KC v v v v

ν ν
ν ν ν

ν ν
ν

′ ′−
′′ ′ ′ ′ ′ ′ ′− − +

′ ′ ′ ′+ +
′ ′−



             (15) 

 where 2 2
0 1,0 2,0= ( ) ( )v vν ′ ′+ . 

Therefore,  
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2
1,1

2 2 3
1,2

2 2 2 2

3 2 2

( ) = (1/ 2) ( (0) (0)),
( ) = ((1/ 3)( ( (1/ 2) )( (0))

(3 / 2) (0) ( (0)) ( (1/ 2) )( (0)) (0)
(3 / 2) ( (0)) ) / (1/ 3)((1/ 2) ( (0))
(1/ 2) (0) (0) (

D L

L D

D L L D

D L L

D L

v t lt K C x C y
v t l C C x

C ly C x l C C y x
C l y C K l C x g
C x y g C

′ ′− +
′− +

′ ′ ′ ′+ + − +
′ ′+ +

′ ′ ′+ + 2 3

2
2,1

2 2 3
2,2

2 2 2

2

(0)) ) / ) ,

( ) = ( (1/ 2) ( (0) (0)) (1/ 2) ) ,
( ) = (1/ 3)( ( (1/ 2) )( (0)) (3 / 2) ( (0)

(2 / 3) )( (0)) (0)( ( (1/ 2) ) (0)
(1/ 2) ) (0) (3 / 2)( (0)) (

D L

L D D L

L D

L D L

y g K l t

v t K C y C x l g t
v t lK C C y C KC lx

g y x lK C C x
C g y x C KC l

′ ′− − −
′ ′− + −

′ ′ ′− + − +
′ ′ ′− −



3

(0)
(1/ 3) )) / ,

x
g t K l−



    (16) 

 where 2 2= ( (0)) ( (0))l x y′ ′+ . 

We obtained 1,3 2,3,v v , and the succeeding terms using Maple software, nevertheless, because they were too 

cumbersome, we skip them and use them only in the final results. Now, from (7), we obtain a 26-th order 

approximation, then considering 1p →  yields the approximate solution of (9) as  

26

1 1,
1 =0

26

2 2,
1 =0

( ) = ( ) = ( ),lim

( ) = ( ) = ( ).lim

j
p j

j
p j

x t v t v t

y t v t v t

→

→

∑

∑
                                                (17) 

In order to perform the Laplace-Padé after-treatment, we set the values of the parameters as in [20]: 

= 0.28DC , = 0.28LC , = 9.81g  m/s 2 , = 1.21ρ  kg/m 3 , = 4.267d  m, = 4.593m  kg, (0) = 70v  

m/s, and (0) = 16θ  .  

First, Laplace transformation is applied to (17) and then 1/ t  is written in place of s  in the equation.  

Afterwards, Padé approximant ([5 / 6]  for ( )x t  and [8 / 8] for ( )y t ) is applied and 1/ s  is written in place 

of t . Finally, by using the inverse Laplace s  transformation, we obtain the modified approximate solution  
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3( ) = 0.2029509828 10 exp( 4.999529628 )
0.01810030329exp( 3.058610449 )
5.165390824exp( 1.171860096 )
85.79724064exp( 0.5491271940 )
90.94432822exp(0.06739850672 )cos(0.08603945021 )
93.54394846exp(0

x t t
t

t
t
t t

−× −
+ −
− −
− −
+
+

5

2

.06739850672 )sin(0.08603945021 ),

( ) = 0.1934806557 10 exp( 6.379116675 )
0.1169527020 10 exp( 4.250858281 )
0.1269162478exp( 2.681336898 )
4.992816897exp( 1.470140005 )
14.64408668exp( 0.3883152650

t t

y t t
t

t
t

−

−

× −
+ × −
+ −
+ −
− − ) cos(0.4888655127 )

14.37291850exp( 0.3883152650 )sin(0.4888655127 )
9.553182056exp(0.05600508947 )cos(0.3571684824 )
38.44703880exp(0.05600508947 )sin(0.3571684824 ),

t t
t t
t t
t t

+ −
+
+

             (18) 

4.2  Mercury’s Orbit 

The dynamics of Mercury’s orbit can be described by the following equation  

2 1 = 0, (0) = 0, (0) = 0,u u u u uδ
α

′′ ′+ − −                   (19) 

 where the prime denotes derivative with respect to the angular displacement θ  and  

2

2

2

3= ,

= ,

= (1 ),

= .

GM
c

Gm M

GmM

mM
m M

δ

α

m α ε

m

−

+





                                          (20) 



American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2018) Volume 47, No  1, pp 103-115 

 

110 
 

The parameters of the model are: the gravitational constant 11= 6.6726 10G −× , the mass of the sun 
30= 1.99 10M × , the speed of light 8= 3 10c × , 10= 5.787145 10α × , the eccentricity = 0.2056ε  and 

the mas 23= 3.285 10m ×  of the planet. 

According to the HPM (relation (4)), we can construct the homotopy map as follows  

21 1(1 )( ) = 0,p v v p v v vδ
α α

 ′′ ′′− + − + + − − 
 

                         (21) 

From (7), we assume that the solution of (21) can be written as a power series of p  as follows  

3

=0
= ( ),i

i
i

v v p∑                                                                     (22) 

Next, we substitute (22) into (21), rearrange the coefficients of p  powers, and equating them to zero, resulting 

0 0 0 0

2
1 0 1 1 1

2 2 0 1 2 2

2
3 1 0 2 3 3 3

1 = 0, (0) = 0, (0) = 0,

= 0, (0) = 0, (0) = 0,

2 = 0, (0) = 0, (0) = 0,

2 = 0, (0) = 0, (0) = 0,

v v v v

v v v v v

v v v v v v

v v v v v v v

α

δ

δ

δ δ

′′ ′

′′ ′

′′ ′

′′ ′

+ −

− +

+ −

− − +

                            (23) 

Therefore,  

0

1 2

2
2 3

2

3
3 4

1= (cos( ) 1),

1= ( 9 cos(2 ) 8cos( ) 6sin( ) ),
6

1= (509cos( ) 624 112cos(2 ) 468sin( ) 3cos(3 )
144

48 sin(2 ) 72cos( ) ),

1= ( 5048cos( ) 27 sin(3 ) 5163sin( ) 948 sin(2 )
432

72si

v

v

v

v

θ
α

δ θ θ θ θ
α

δ θ θ θ θ θ
α

θ θ θ θ

δ θ θ θ θ θ θ θ
α

− −

− − + + +

− − + + +

+ −

− − − −

+ 3

2 2

n( ) cos(4 ) 1512cos(2 ) 6633 72cos(3 )

144 cos(2 ) 1116cos( ) ).

θ θ θ θ θ

θ θ θ θ

− − + −

+ +

         (24) 
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Now, from (7), we obtain a third order approximation, then considering 1p →  yields the approximate solution 

of (9) as  

3

1 =0
( ) = ( ) = ,lim i

p i
u t v t v

→
∑                                                                (25) 

5.  Numerical Simulation and Discussion 

 Figures 1-2 show a comparison between the HPM approximations (18) and (25) of (9) and (19), resulting a 

good agreement with numerical results. The numerical algorithm used is Fehlberg fourth-fifth order Runge-

Kutta method with degree four interpolant (RKF45) [4, 6] solution (built-in function of Maple software. 

Furthermore, in order to obtain a good numerical reference the accuracy of RKF45 was set to an absolute error 

of 1210−  and relative error of 1210− . 

For the first case study, the HPM solution (17) was easily obtained by a straightforward procedure. However, 

the resulting power series solution diverge for large periods of time. Therefore, in order to enlarge the 

convergence, the Laplace-Padé resummation method was successfully applied to (17) to obtain (18), resulting a 

good agreement with RKF45 results for the complete trajectory of the golf ball. Using the approximations, we 

obtain a predicted impact point of 223.2487023 m with a relative error of 35 10−× . This result exhibited the 

high accuracy of the proposed solution. 

For the second case study, we obtained the HPM approximation (25) of (19), resulting a good agreement (

< 10θ ) with numerical results as depicted in figure 2 and figure 3. The accuracy of the proposed 

approximation decrease as θ  increases due to the secular terms of the approximation. 

 

Figure  1: LPHPM solution (18) (solid-line) for (9), and its RKF45 solution (dash-dot) 



American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2018) Volume 47, No  1, pp 103-115 

 

112 
 

 

Figure  2: HPM third order solution, (solid-line); RKF45 solution, (dash-dot). 

 

Figure  3: Absolute error for HPM with respect to RKF45 numerical solution 

6. Concluding remarks 

In this paper, HPM method is applied to construct approximated analytical solutions for the model for a golf ball 

trajectory and Mercury’s orbit. The numerical experiments and error analysis are presented to support the 

theoretical results. Our solutions agree well with the pure numerical solutions. 
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