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Abstract

We have developed in this research paper, some of the fundamental relationship between generalized fractional
Hilbert transform with fractional Mellin transform, fractional Laplace transform, fractional inverse Laplace
transform.. The results are mathematically expressed. These results, however, need modelling and simulation
with any specialized signal processing data.
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1. Introduction

Fractional Hilbert transform(FRHT) is introduced by Lohmann and his colleagues [1]. They proved in their
paper that the FRHT is the generalization of the Hilbert transform(HT). Their generalization is based on

modifying the spatial filters and fractional Fourier plane for filters.
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In continuation of the work [1], Davis and his colleagues [2] employed FRFT for edge detection and proved that
as the fractional order is varied then different qualities of edge enhancement are obtained. In [3] discrete
counterpart of the FRHT is discussed. Zayed [4] took the analytical signal (AS) formalism associated with the
standard Fourier transform (FT) and provided a counterpart of it for the fractional Fourier transform (FRFT).
The communication applications is discussed by using FRHT in [5] Fractional Hilbert transform is a special
case of linear canonical transform (LCT) which has diverse applications such as in an image enhancement or
compression by using the angle of rotation in the complex plane (t,w) of fractional Fourier transform (FRFT)
on optical systems, edge deduction for propagation and delay times , beam flowing and indeed in signal
processing [6-13]. Needless to mention, the integral transforms have significant applications in both Physics and
Applied Mathematics. Akilahmad Sheikh and Alka Gudadhe [14,15] worked on relationships on generalized
fractional Hilbert transform with some classical transforms and developed analytic theorems. The fractional
Hilbert transform is a generalization of Hilbert transform and so is the case of fractional Fourier tansform
(FRFT). The scale invariance property of fractional Mellin transform (FMT) is a very important tool to
constructing two dimensional real images  [16]. Analysis of Hilbert transforms with fractional Fourier
transform (FRFT) [17-18] resulted into many fascinating results. The use of fractional Hilbert transforms and its
extensions lead to analytical behavior of signal constructions. [9]. This is how amplitude modulation (AM,)
frequency modulation (FM) or phase modulation(PM) can be exploited in Weiner filter for controlling the
changes in phase signals. These fractional phase changes are the manifestations of the Fractional Hilbert
transform and of the Morlet and Harlet wavelets for two super posed wave form. The same behavior is
witnessed with Fourier transform [4]. The Fractional Laplace transform is also the genialized case of Laplace
transform. Heaviside step function is a step forward to deal with Laplace transform because it deals in the
denominator with a function with fractional exponent. Laplace and its corresponding fractional Laplace
transform deals with Wigner distribution(WD), Wiener space(WS) the ambiguity fraction, the short time
Fourier transform(SSTFT), speech processing, radar, image rotation, Confocal microscopy, etc. The aperiodic
stable chaos with Lyapunov experiments in real time signals can be studied with fractional Laplace transform
[19-20].

2. Results and Discussions

2.1. The relationship between generalized fractional Hilbert transform with fractional Mellin transform
The relation between Fractional Mellin transform and fractional Fourier is defined in [16] as

FRMT][f (x)] = FRFT[f (e")]

1—icota [© _ i3 2
= Tf f(et) e—mtcosecaez(t +u )cotadt (1)

FRFT is the fractional Fourier transform and its definition and its  applications are disused in [21-23].

Where FRMT is fractional Mellin transform and defined as
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M*(u) = FRMT[f(t)] = ’ﬂf f(t) e iutcoseca 2(t2+u2)cotadt

The generalize fractional Hilbert transform is defined in [14] as
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By changing the order of integration
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From [18] we have

co elut )
J- dt = —i sgn(u)e™™ 4

equation (3) can be written as

jcota 2 |1 —icota ota ¢ .
=e"2 f fleHe' et 2 (l)sgn( na) g-ivtcoseca j;
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Equation (4) is the relation between generalized fractional Hilbert transform and Fractional Mellin transform.
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2.2. The relationship between generalized fractional inverse Hilbert transform with fractional Mellin

transform

Let @) = [ f(6) emtuicoseeagatieote gy (5)
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by changing the order of integration
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Equation (9) is the relation between generalized fractional inverse Hilbert transform and Fractional Mellin
transform.

2.3 Relationship between generalized fractional invers Hilbert transform with fractional Laplace transform
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Fractional Laplace transform is defined in [24] as
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Using equation (5)
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Interchanging the integration order
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Equation (15) is the relation between generalized fractional Hilbert transform and Fractional Laplace transform.
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2.4 The relationship between generalized fractional Hilbert transform with fractional inverse Laplace

transforms

The fraction inverse Laplace transform is defined in [24]
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On the relationship between generalized inverse fractional Hilbert transform with fractional inverse Laplace

transform
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3. Conclusion

We have established mathematically the relationship of the fractional Hilbert transform with fractional Mellin
transform and Fractional Laplace transform., which will play a significant role in signal processing and other

field of applied mathematics, engineering and physics.
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