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Abstract 

Over the past several decades, the application of magnetic resonance imaging (MRI) has been rapidly expanding 

in the areas of brain research studies and clinical diagnosis. One of the most important steps in brain MRI data 

preparation is the removal of unwanted brain regions, which is followed by segmentation of the brain into three 

main regions – white matter (WM), grey matter (GM) and cerebrospinal fluid (CSF) – or into subregions. In 

brain MRI analysis, image segmentation is commonly used for measuring and visualizing the brain’s anatomical 

structures, analyzing brain changes, delineating pathological regions, and surgical planning and image-guided 

interventions. Brain segmentation allows clinicians and researchers to concentrate on a specific region in the 

brain in their analyses. However, brain segmentation is a difficult task due to high similarities and correlations 

of image intensity among brain regions. In this review, image segmentation algorithms used for dividing the 

brain into different sectors were discussed in detail. The potential for using the fuzzy c-means (FCM) 

unsupervised clustering algorithm and certain hybrid (combined) methods to segment brain MR images was 

demonstrated. Additionally, certain validation techniques that are required to demonstrate the performance of 

segmentation methods in terms of accuracy rates were described.  
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1. Introduction 

Medical imaging applications in clinical diagnosis and brain research studies have dramatically expanded over 

the past few decades. Among imaging modalities, magnetic resonance imaging (MRI) is one of the safest 

methods for producing data with high spatial resolution, and it is also a low-risk, non-invasive modality [1]. 

MRI, which is also considered an advanced imaging technique, provides structural and anatomical information 

on the human brain as soft tissue [2]. Moreover, the human brain is the most complex organ in the human body, 

with an intricate anatomy that interfaces with almost all other organs through trillions of synapses. The brain 

includes many complicated regions, including the basal ganglia and cerebellum. The supratentorial cortex is 

divided into four paired lobes: frontal, parietal, temporal, and occipital. The brain stem, located between the 

spiral cord and the rest of the brain, controls breathing and sleep. The frontal lobe manages problem solving, 

judgement and motor function, while the parietal lobe manages body position, hand writing, and sensation. The 

temporal lobe is responsible for memory and hearing, and the occipital lobe processes visual signals [3]. The 

massive amount of 3D brain data collected through MRI technique requires segmentation for the purposes of 

further image analysis. In image processing and analysis, segmentation is the process of dividing or categorizing 

images into segments or blocks based on the mutual property specified according to which each region is to be 

extracted [4]. The fundamental process that facilitates image analysis, understanding, interpretation and 

recognition is image segmentation. Manual segmentation is a traditional approach that is still used in some 

cases, but it is a very challenging and time consuming method requiring a high level of precision and certain 

tools, and it sometimes yields non-reproducible results. Therefore, semi- or fully automatic segmentation 

algorithms are necessary to segment brain data. Primary methods of MRI brain segmentation are concentrated 

on clustering of the brain into three main classes: white matter (WM), grey matter (GM) and cerebrospinal fluid 

(CSF). Over the past two decades, segmentation of the whole brain into the primary cerebrum tissues (i.e. CSF, 

GM, and WM) has been one of the core challenges in neuroimaging, which is still an active area of research 

using novel techniques [5]. However, brain MRI segmentation (BMS) is challenging and requires several 

preprocessing steps due to low signal to noise ratio (SNR) and artifacts in raw MRI data. The main sources of 

noise are categorized as biological and scanner noises because of tissue non-uniformity and limitations in 

hardware [6]. Various segmentation techniques are utilized in BMS, including statistical, image intensity-based 

methods, which will be discussed later.   

2. Concepts and Methods 

Understanding brain structure helps researchers to optimally develop models and algorithms for brain MRI 

segmentation. In addition, structural MRI data require certain preprocessing steps to remove noise and artifact 

from the data. Various neuroimaging scientists and researchers have developed or improved upon methods to 

overcome such challenges. These methods are basically categorized into three primary classes: boundary-based 

methods, region-based methods and hybrid methods. In boundary or edge-based methods, or techniques, the 

gradient or edge-based features surrounding an object boundary are used as a measure of discontinuity to assist 

in segmentation. In region-based methods, brain MR segmentation is usually performed through the 

identification of a homogeneity feature that signifies one of the corresponding brain tissues. Hybrid methods 

include a combination of similarity and discontinuity to segment images. In modern techniques, as well as those 
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techniques mentioned earlier, a decision-making algorithm can result in highly accurate segmentation [7,8,9]. 

2.1. Brain Structure 

The central nervous system (CNS) is comprised of the brain and spinal cord. The brain is the most complex 

organ in the human body, controlling all activities. In one respect, the brain is made of three major parts: the 

forebrain, the midbrain and the hindbrain. MRI has the capability of imaging the three brain parts by acquiring 

data from different angles and producing 3D sMRI data. The forebrain consists of the cerebrum, thalamus and 

hypothalamus (part of the limbic system). The midbrain consists of the tectum and tegmentum. The hindbrain is 

comprised of the cerebellum, pons and medulla. Often the midbrain, pons, and medulla are referred to in 

combination as the brainstem. The cerebrum, or cortex, is the largest part of the human brain, associated with 

higher brain functions, such as thought and action. The cerebral cortex is divided into four sections, or lobes: the 

frontal lobe, parietal lobe, occipital lobe and temporal lobe. The frontal lobe is associated with reasoning, 

planning, parts of speech, movement, emotions and problem solving. The parietal lobe is associated with 

movement, orientation, recognition and perception of stimuli. The occipital lobe ix associated with visual 

processing. The temporal lobe is associated with perception and recognition of auditory stimuli, memory and 

speech [3].  

 

Figure 1: The brain regions and functions (Image courtesy: Animated Dissection of Anatomy for Medicine 

A.D.A.M. www.adam.com) 



American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2017) Volume 27, No  1, pp 122-138 

125 
 

2.2. Brain Subcortical Structures 

The subcortical structures receive massively different inputs from the cerebral cortex and peripheral sense 

organs and stretch receptors. Through recurrent feedback loops, this information is integrated and shaped to 

provide output, which contributes to scaling, sequencing and timing of movement, as well as learning and 

automatization of motor and nonmotor behaviors. The cerebellum is the first subcortical structure, and in terms 

of functional neuroanatomy, the cerebellum can roughly be divided into (1) vestibulocerebellum integration of 

vestibular information, (2) spinocerebellum integration of sensory information from the body, and (3) 

pontocerebellum integration of information from the cortex regarding planned or ongoing movement. Its 

functionality is proposed as follows: (1) a timing device for movement, (2) facilitation of motor learning, and (3) 

facilitation and correct scaling and harmonization of muscle activity. Clinical features of cerebellar lesions 

include impairment of movement with dysmetria (‘past-pointing’), dysdiadochokinesia, truncal and gait ataxia 

(in midline vermal lesions), dysarthria, and abnormal eye movements (commonly nystagmus).  

The second brain subcortical structure is the Basal ganglia, and from the perspective of functional 

neuroanatomy, they participate in multiple parallel loops that transfer information from different (mainly 

cortical) areas and in turn transfer feedback (primarily) to those same areas. Input is mainly from the striatum; 

output comes almost exclusively from either the globus pallidus interna or the substantia nigra pars reticulate, 

which send inhibitory projections to the thalamus. Dopamine is the main neurotransmitter that regulates activity. 

The thalamus function includes four main roles, which are as follows: (1) release of desired movement from 

inhibitory control, (2) inhibition of undesired movement, (3) facilitation of sequential automatic movements, 

and (4) integration of attentional, reward and emotional information into movement and learning. Clinical 

features of basal ganglia lesions include rigidity, akinesia, and dystonia. 

The thalamus is the third subcortical part of the human brain. In functional neuroanatomy, the thalamus receives 

afferent input from the special senses, basal ganglia, cerebellum, and cortex and brainstem reticular formation. 

Efferent output is primarily directed to the cortical areas and striatum. The main thalamic functions are thought 

to include: (1) modulation of sensory information by integration of brainstem (in particular the reticular 

activating complex) and relevant cortical information; and (2) modulation of cortical activity via cortico-

thalamocortical loops. Clinical features of thalamic lesions include: (1) sensory abnormalities ranging from loss 

to deep-seated, severe pain; (2) motor disorders, e.g., hemiplegia; and (3) movement abnormalities, e.g. 

myoclonus and dystonia, usually in the context of lesions that also involve the basal ganglia [3]. 

2.3. MRI and Preprocessing 

The intensity of brain tissue is one of the most important features of brain MRI segmentation. However, when 

intensity values are affected by MRI artifacts, such as image noise, partial volume effect (PVE), and bias field 

effect, intensity-based segmentation techniques can lead to inaccurate results. Consequently, to obtain relevant 

and accurate segmentation results, several preprocessing steps are required to prepare MRI data. For example, it 

is essential to remove background voxels, extract brain tissue, perform image registration for multimodal 

segmentation, and remove the bias field effect. When the bias field, non-brain structures (e.g., the skull and the 
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scalp) and background voxels are removed, the histogram of the human brain MRI has three main peaks, which 

correspond to the three main tissue classes. In the healthy adult brain, the intensity variation within tissue is 

small, and the intensities inside the brain can be considered to be a piecewise constant intensity function, 

corrupted by noise and PVE. The PVE describes the loss of small tissue regions due to the limited resolution of 

the MRI scanner. This means that one pixel/voxel lies in the interface between two (or more) classes and is a 

mix of different tissues. This problem is even more critical in imaging of the small neonatal brain. The 

correction of PVE will be addressed in Section 4.6. It has been shown that the noise in the magnitude images is 

governed by a Rician distribution, based on the assumption that the noise on the real and imaginary channels is 

Gaussian. The probability density function for a Rician distribution is defined as follows: 

𝑓𝑓𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑥𝑥) =
𝑥𝑥
𝜎𝜎2

exp (−
(𝑥𝑥2 + 𝑦𝑦2)

2𝜎𝜎2
)𝐼𝐼0(

𝑥𝑥𝑥𝑥
𝜎𝜎2

) 

Figure 5: Rician distribution 

Where x is the measured pixel/voxel intensity, v is the image pixel/voxel intensity in the absence of noise, σ is 

the standard deviation of the Gaussian noise in the real and the imaginary images, and I0 is the zero order 

modified Bessel function of the first kind.  

As mentioned above, several preprocessing steps are required to clean MRI data from noise or artefacts. 

However, the preprocessing steps vary in different studies. The most effective and popular processing steps are 

as follows: 

Geometric distortion derives from various sources, such as nonlinear gradient magnetic field, or susceptibility 

and chemical shift. Using standard phantoms, this distortion can be corrected.  

Intensity non-uniformity is primarily caused by inhomogeneity in the main magnetic field. Additionally, 

gradient inhomogeneity, radiofrequency inhomogeneity, amplifiers and analog-to-digital converters can cause 

this issue. To correct intensity non-uniformity, the bias field is estimated.  

Noise reduction is often corrected through applying certain image processing techniques such as blurring, 

anisotropic blurring or a non-local means filter. For instance, spatial smoothing using a Gaussian filter is 

performed to remove noise from structural MRI data.  

Motion correction is one of the most important steps in the preprocessing of MRI data. Because of any 

unexpected patient movement, an MRI slice can be affected. This can be corrected through the inter-session or 

intra-contract corrections method.  

Skull stripping is the process of finding the skull region in the brain and removing that region from each MRI 

slice. As mentioned earlier, the ultimate goal of brain segmentation is to classify the brain into three major 

classes, or additional subclasses. Skull removal helps to analyze the meaningful regions of the brain that contain 

any structural or functional information.  
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Intensity normalization is a semi-optional step that depends on the type of analysis. Researchers sometimes 

perform normalization within an individual subject or on a global scale [7].  

 

 

Figure 2: The left image shows the MRI data preprocessing pipeline. The middle image shows the histogram of 

a middle slice of MRI data. The right image shows six segmented brains (a middle slice) using different 

software packages such as FSL, SPM and FreeSurfer. The white regions represent White Matter, the grey 

regions represent Grey Matter and the black regions within the brains represent the CSF (Image courtesy: Dr. 

Andreas Meyer-Lindenberg). 

2.4. Segmentation Methods 

Difficulties in brain MR image segmentation have led researchers to develop various image processing or 

machine learning-based algorithms to segment the brain into WM, GM and CSF, or to further segment the brain 

into subregions. However, due to complexity of this segmentation task, novel methods have been developed by 

combining certain techniques followed by decision-making algorithms [8]. In general, the BMS is categorized 

as follows: 

• manual segmentation; 
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• intensity-based methods, including thresholding, region growing, classification and clustering; 

• atlas-based methods; 

• surface-based methods, including active contours and surfaces, and multiphase active contours  

• hybrid methods. 

2.4.1. Manual Segmentation  

This classic technique refers to the segmentation process in which a human being who is usually an expert 

physician, neuroscientist or individual who knows and understands brain anatomy labels the brain regions by 

using basic brain imaging software tools. This slice-by-slice segmentation method can be the most accurate 

method, but it is very time-consuming and might be non-reproducible if it is done by a non-expert. Manual 

segmentation is often done and is still used to define a surrogate for true delineation and to prepare ground truths 

and labels to validate other segmentation techniques. For manual segmentation, editing software packages such 

as ITK-SNAP (http://www.itksnap.org) usually display 3D data in the form of three synchronized 2D 

orthogonal views (sagittal, coronal, and axial), onto which the operator draws the contour of the target structure. 

The output data therefore consists of a series of 2D contours, from which a continuous 3D surface must be 

extracted. This is a nontrivial post-processing task that is prone to error. For instance, due to inter-slice 

inconsistencies in segmentation, bumps in the reconstructed 3D surface are inevitable. More robust 

segmentation methods can usually be derived from true 3D structural models because they can globally ensure 

smoother and more coherent surfaces across slices. 

2.5. Intensity-based Methods 

In this category, segmentation methods classify brain regions directly based on pixel or voxel image intensity, or 

indirectly through image intensity-based features extracted from brain images. Although these methods are the 

most popular and straightforward techniques, their application is limited to three brain region classifications. 

Due to the high correlation of image intensities within WM, GM and CSF tissues, a detailed and subregional 

classification is highly challenging and often fails. Moreover, the classification of WM and GM may sometimes 

fail if the SNR of data is still low after preprocessing.  

2.5.1. Thresholding 

A histogram of a given brain slice, as shown in Figure 2, indicates certain peaks representing the main three 

regions in the brain. Thresholding the histogram is a straightforward way to segment the brain. In this technique, 

the algorithm attempts to determine the optimal intensity values for each peak and sometimes a meaningful 

interval for the optimal value called threshold τ to segment the three brain regions. Thresholding methods have 

many variations: global (single threshold) or local threshold (depending on the position in the image), multi-

thresholding, adaptive thresholding, and so forth. The following Figure demonstrates how the thresholding 

method applies to a brain image of I(i, j) to segment the three regions.  
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𝐼𝐼𝑡𝑡𝑡𝑡 = �
𝐺𝐺𝐺𝐺, 𝑖𝑖𝑖𝑖 𝜏𝜏1 − 𝜎𝜎 < 𝐼𝐼(𝑖𝑖, 𝑗𝑗) < 𝜏𝜏1 + 𝜎𝜎
𝑊𝑊𝑊𝑊, 𝑖𝑖𝑖𝑖 𝜏𝜏2 − 𝛿𝛿 < 𝐼𝐼(𝑖𝑖, 𝑗𝑗) < 𝜏𝜏2 + 𝛿𝛿

𝐶𝐶𝐶𝐶𝐶𝐶, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑠𝑠𝑒𝑒
 

Figure 6: Thresholding algorithms to segment the brain into three regions. 

Where Itr represents the segmented regions, τs are thresholds extracted from the image histogram and σ, δ are an 

interval estimate that also must be calculated based on the histogram. Finding the best thresholds and interval 

values are data dependent processes that vary according to the data. However, using grid search or greedy 

algorithms, optimal values are obtained. The extant research has shown that an identical form of MR 

preprocessing, including image normalization, can achieve similar thresholds and intervals in different datasets.  

Thresholding is a simple and computationally efficient technique, but it does not consider spatial characteristics 

of an image, such as neighborhood data. However, the thresholding method has limitations since it is sensitive 

to noise and intensity inhomogeneity. In low-contrast and poor resolution images, this technique fails to 

properly segment the brain, producing scattered labels instead of connected blobs, and it may require 

connectivity algorithms as a post-processing step. In general, threshold-based segmentation methods are not 

suitable for textured images. This is because the perceptual qualities of textured images are based on higher-

order interactions between image elements or objects in the scene. However, in brain MRI segmentation, 

thresholding can be used to separate background voxels from brain tissue or to initialize the tissue classes in 

iterative segmentation methods. 

2.5.2. Region Growing 

A region growing algorithm is a simple segmentation method that merges pixels based on certain criteria. This 

method, which is also called “region merging,” attempts to consolidate juxtaposed pixels and create a blob or 

region based on similarities such as image intensity. In other words, this technique is used for extracting a 

connected region of the image consisting of groups of pixels with similar metrics (i.e., intensities). In its 

simplest form, region growing starts with a seed point (pixel/voxel) that belongs to the object of interest. The 

seed point can be manually selected by an operator or automatically initialized with a seed-finding algorithm. 

Region growing then examines all neighboring pixels/voxels, and if their intensities are sufficiently similar 

(satisfying a predefined uniformity or homogeneity criterion); they are added to the growing region. This 

procedure is repeated until no more pixels/voxels can be added to the region. Region growing is appropriate for 

segmentation of volumetric images that are composed of large connected homogeneous regions. Accordingly, it 

is successfully used in medical image analysis to segment different tissues, organs, or lesions from MR images. 

The main drawback of the region growing technique is its sensitivity to the initialization of the seed point. By 

selecting a different seed point, the segmentation result can be completely different. If seed point and 

homogeneity criterion are not properly defined, the growing region can leak out and merge with the regions that 

do not belong to the object of interest. Region growing is also sensitive to noise, and as a result, segmented 

regions in the presence of noise can become disconnected.  
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2.5.3. Machine Learning Methods 

Machine learning techniques are categorized into supervised and unsupervised learning. In supervised methods, 

a model or algorithm is trained using training samples while the ground truths and labels are provided for each 

sample. In unsupervised methods, no label is provided for samples, and the term “unsupervised” refers to data 

without ground truth. Both supervised and unsupervised methods are used in BMS, but unsupervised methods 

have been of greater interest to researchers. As mentioned in the BM manual segmentation section, preparing 

labels for training samples requires significant efforts. On the other hand, most supervised learning methods 

require numerous samples in the training phase. Therefore, providing enough samples to successfully train a 

classifier is challenging. In contrast, unsupervised techniques are less sensitive to data size and can function 

even in the case of small data size. However, the accuracy of classification might not be as good as supervised 

methods, but it can compete in certain cases.  

K-nearest-neighbor (K-NN) is a simple and supervised classifier which divides the brain into blocks based on 

the closest distance (image intensity). The KNN classifier is considered a nonparametric classifier because it 

makes no underlying assumption about the statistical structure of the data. Segmentation is then calculated in an 

iterative process by interleaving the segmentation refinement while updating the non-rigid alignment to the 

template. This procedure requires manual selection of a large number of training samples for each tissue class to 

train the KNN classifier. Due to the manual interaction in the training phase, the method is not fully automatic, 

and the results depend on the particular choice of the training set. 

The Bayesian, or the naïve Bayes classifier, is a probabilistic classifier based on Bayes’ theorem with naïve 

independence assumptions between features. In simple terms, Bayesian probability is represented as follows:  

posterior =  
prior × likelihood

evidence
 

Figure 7: Bayesian probability 

Bayesian classifiers are used in expectation-maximization (EM) segmentation methods, which have been 

successfully implemented in several software packages used in the medical imaging community: SPM, FAST, 

FreeSurfer, and 3DSlicer. All of these methods implement segmentation and bias correction in the EM 

framework. 

Artificial Neural Network (ANN) and Support Vector Machines (SVM) are more complicated supervised 

learning techniques where decent amounts of training data are required. Due to the high complexity of those 

models, there is the potential for under- or overfitting of the models. Additionally, the provision of training data 

is always challenging. However, they yield a very high accuracy rate for classification once the training process 

is successfully performed.  

The Hidden Markov Random Field (HMRF) model is derived from hidden Markov models (HMM), which 

are defined as stochastic processes generated by a Markov chain whose state/sequence cannot be observed 
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directly, but through a sequence of observations. Each observation is assumed to be a stochastic function of the 

state, or sequence. The underlying Markov chain changes its state according to a transition probability matrix, 

which is the number of states. HMMs have been successfully applied to speech recognition and handwritten 

script recognition. Since original HMMs were designed as one-dimensional (1-D) Markov chains with first-

order neighborhood systems, they cannot be directly used in two-dimensional (2-D)/3-D problems such as 

image segmentation. Here, we consider a special case of an HMM in which the underlying stochastic process is 

an MRF instead of a Markov chain and is therefore not restricted to one dimension. An FSL FAST software 

package has been developed based on this algorithm, and its classification results have been very satisfying over 

the past several years [2]. 

Clustering methods are unsupervised learning algorithms. Unlike classification methods, no labels are provided 

in the clustering (segmentation) process. Most of the clustering methods aim to group samples (pixels) based on 

a given distance definition. These methods are broadly used to segment the brain into the three main regions. 

The most commonly used clustering methods are k-means clustering, fuzzy c-means clustering, and the 

expectation-maximization method (EM). 

In the k-means clustering method, which is the most popular unsupervised learning algorithm and has 

successfully solved various clustering problems, the samples (pixels) are categorized based on fixed apriori 

knowledge, which is the number of cluster (K). The main idea is to define k centers, with one for each cluster. 

These centers are strategically placed, because different locations cause different results. Therefore, the better 

choice is to place them as far away from each other as possible. The next step is to take each point belonging to 

a given data set and associate it to the nearest center. When no point is pending, the first step is completed, and 

an early group age is done. At this point, we need to re-calculate k new centroids as the barycenter of the 

clusters resulting from the previous step. After these k new centroids are defended, a new binding is performed 

between the same data set points and the nearest new center using a loop that is already generated. As a result of 

this loop, the k centers may change their location step by step until no more changes are required or, in other 

words, the centers do not move any more. Finally, this algorithm aims at minimizing an objective function 

known as the squared error function, which is given by: 

J = ���xi
(j) − cj�

2
n

i=1

k

j=1

 

Figure 8: K-Mean SSE function 

Where k is the number of clusters, n is the number of samples, and cj is a given centroid. Additionally, �xi
(j) −

cj�
2
 is a chosen distance measure between a given data point and cluster center. In more complicated cases, 

instead of Euclidian, the Mahalanobis distance is calculated. This distance is a multi-dimensional generalization 

for measuring how many standard deviations away xi
(j) is from the mean of cj.  

The fuzzy c-means (FCM) algorithm is an unsupervised clustering method that allows one sample (pixel) to 
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belong to more than one cluster. FCM partitions a set of n objects x {x1 , x2 , . . . , xn} in Rd dimensional space 

into c(1 <  c <  n) fuzzy clusters with y =  {y1 , y2 , . . . , yc} cluster centers or centroids. The fuzzy clustering 

of objects is described by a fuzzy matrix µ with n rows and c columns in which n is the number of data objects 

and c is the number of clusters. µij , the element in the ith row and jth column in µ , indicates the degree of 

association or membership function of the ith object with the jth cluster. The objective function of the FCM 

algorithm is to minimize the following Figure: 

Jm = �� uijmdij

n

i=1

c

j=1

 

dij = �xi − yj� 

Figure 9: FCM objective functions 

Where n is the number of image elements that need to be partitioned into c clusters, uij is the membership 

function of the element xj  (a feature vector at position  j ) belonging to the ith  cluster, m  is the weighting 

exponent that controls the fuzziness of the resulting partition (most often is set to m =  2, if m =  1 we have 

the k-means clustering), and dij  is the similarity measure between xj and the ith  cluster center yj . The FCM 

algorithm iteratively optimizes Jm  until the stop criterion is satisfied. The FCM process is summarized as 

follows [9] [10]: 

• Select m(m >  1); initialize the membership function values µ ij, i =  1,2, . . . , n;  j =  1,2, . . . , c.  

• Compute the cluster centers  yj , j =  1,2, . . . , , c  

• Compute the Euclidian distance dij , i = 1,2 … , n j = 1,2, … , c. 

The expectation maximization (EM) method is an iterative method for finding the maximum likelihood or MAP 

estimates of a statistical model. It has the same soft classification principle as the FCM method but typically 

assumes that MRI intensities of different brain tissues can be represented with a Gaussian mixture model. Even 

though clustering methods do not require training images, they do require some initial parameters, and the EM 

method has shown the highest sensitivity to initialization in comparison to FCM and k-means methods [8]. 

Figure 3 shows the results of WM, GM and CSF segmentation using k-means clustering. 

2.6. Atlas-based Methods 

Certain research groups have developed brain atlases, including three main regions and subregions. The atlases 

are probability maps indicating where each voxel is associated to which region in the brain based on what 

probability. This brain segmentation method is one of the most accurate approaches if the atlases are available. 

The Harvard-Oxford cortical and subcortical structural atlases, Jülich histological (cyto- and myelo-

architectonic) atlas, JHU DTI-based white-matter atlases, Oxford thalamic connectivity atlas, Oxford-GSK-

Imanova structural and connectivity striatal atlases, Talairach atlas, MNI structural atlas, probabilistic cerebellar 
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atlas from UCL, subthalamic nucleus atlas from the Cognitive Science Center Amsterdam at University of 

Amsterdam, connectivity-based parcellation atlases and automated anatomical labeling (AAL, or anatomical 

automatic labeling) atlases are the most popular atlases developed by famous research groups across the world. 

It is worth mentioning that most of the atlases have been developed using healthy control brain data for a certain 

age range. In order to use a standard atlas, image registration techniques are required to align the brain MR data 

with the standard atlas. Image registration is often challenging, especially when the brain data have been 

collected from clinical subjects (such as Alzheimer’s or Parkinson’s patients) or from older adults. Differences 

in age range and type of brain disorder cause failures in image registration, which restricts the use of a standard 

atlas in the segmentation of brain images. Figure 4 [11] illustrates brain parcellation using different atlases. 

 

Figure 3: (a) Joint 2D intensity histogram of T1-W and T2-W MRI of the adult brain. The associated 1D 

histograms of each MRI modality are plotted on the left and top. Both individual histograms consist of three 

overlapping Gaussian distributions that approximate the expected tissue distribution of GM, WM and CSF. (b) 

The scatter plot of the tissues intensities after applying tissue segmentation. The horizontal axis represents T1-W 

intensities and the vertical axis represents T2-W intensities. The red cloud corresponds to GM, the green to 

WM, and the blue to CSF. 

2.7. Surface-based Methods  

In the surface-based segmentation algorithm, every connected region of pixels of a given type is eroded 

(contracted) until a sufficiently small number of pixels are obtained in the largest connected subregion. This 

region serves as the seed region to an iterative region growing algorithm based on fitting variable order surfaces 

to the original image data in the seed region and subsequent growth regions. The iterative region growing 

process is directly controlled by (1) the surface fit error obtained at any iteration (2) a pre-specified error 
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tolerance, and (3) a regions test, which is a generalization of the one-dimensional runs test of nonparametric 

statistics for regression analysis. The iteration continues until the termination criteria are met, at which point the 

computed surface region description is rejected or accepted [12]. These approaches include surface-based 

methods, such as deformable models including active contours and surfaces. 

2.7.1. Active Contours and Surfaces 

The term “deformable model” (DM) was pioneered by Terzopoulos et al. to refer to curves or surfaces, as 

defined in the image domain, which are deformed under the influence of internal and external forces. Internal 

forces are connected with the curve features and strive to keep the model smooth during the deformation 

process. On the other hand, external forces are responsible for attracting the model toward features of the 

structure of interest, and are connected with the image features of the adjacent regions to the curve. Hence, DM 

tackles the segmentation problem by considering an object boundary as a single, connected structure, and 

exploiting a priori knowledge of object shape and inherent smoothness. Although DMs were originally 

developed to provide solutions for computer vision applications to natural scenes and computer graphics 

problems, their applicability in medical image segmentation has already been proven. Deformable models use 

closed parametric curves or surfaces for delineating region boundaries. The parametric curves and surfaces 

deform under the influence of external (or image) forces (controlled by image attributes) and internal forces that 

control surface regularity. In general, deformable models represent the fusion of geometry, physics, and the 

approximation theory. Geometry is used to represent the shape of the object, physics defines constraints on how 

the shape may vary over time and space, and the approximation theory provides mechanisms for fitting the 

models to measured data. 

2.8. Hybrid Segmentation Methods  

Hybrid segmentation methods are novel segmentation approaches in which more than one strategy is used to 

segment the human brain into the three main regions or into subregions. As explained before, using one method 

for brain MR image segmentation does not usually yield the highest accuracy rate. Therefore, hybrid or 

combined segmentation methods have been used extensively in different brain MRI segmentation applications. 

The main idea is to combine different complementary segmentation methods into a hybrid approach to avoid 

many of the disadvantages of each method alone and to improve segmentation accuracy. The simplest method is 

to utilize one of the clustering methods mentioned earlier, followed by a decision-making algorithm in order to 

decrease false positive rates. Kapur et al. segmented different brain regions in adults using 2D MRI through 

combining expectation maximization segmentation, dual mathematical morphology, and active contour models. 

Masutani et al. developed a combined model-based region growing algorithm with morphological information 

of local shape to segment cerebral blood vessels. Warfield et al. combined a 3D brain MRI parcellation method 

that iterates between a classification step to identify regions and an elastic matching step to align a template of 

normal brain anatomy with the classified regions. Moreover, an unsupervised global-to-local brain MRI 

segmentation has been developed by Xue et al., in which a minimum error global thresholding approach and a 

spatial-feature based on fuzzy c-means clustering approach were merged to segment 3D MRI at the slice level. 

Vijayakumar and Gharpure developed a hybrid MRI segmentation algorithm using artificial neural networks 
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(ANN), and they also suggested the method for segmenting tumor lesions, edema, cysts, necrosis, and normal 

tissue in T2 and FLAIR MRI. More recently, Ortiz et al. suggested an improved brain MRI segmentation 

method using self-organizing maps (a particular case of ANN) and entropy-gradient clustering. 

 

Figure 4: Atlases of brain areas generated using anatomical (top four rows) and functional (bottom two rows) 

parcellation schemes show a lateral view (right) and top views of the human brain. AAL (automated anatomical 

labeling) and Harvard Oxford (HO) are derived from anatomical landmarks (sulci and gyral). The EZ 

(Eickhoff–Zilles) and TT (Talariach Daemon) atlases are derived from postmortem cyto- and myelo-

architectonic segmentations. The CC200 and CC400 atlases are derived from 200- and 400-unit functional 

parcellations. 
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3. Validation 

The validation process is an important step that is required to define the reliability and reproducibility of a given 

brain MRI segmentation method. Similar to most validation techniques, the ground truth, or so-called labels, is 

required for data to validate the algorithm. The segmented brain images are compared to the corresponding 

ground truth, and most of the time, an accuracy rate as the validation metric is calculated. For instance, the 

number of pixels that have been correctly segmented is divided by the total number pixels in the brain. Another 

method is the Dice coefficient definition, which is used to quantify the overlap between the MRI segmentation 

and the given “ground truth,” defined as follows: 

𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫 𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝒏𝒏𝒏𝒏𝒊𝒊 =
𝟐𝟐|𝑨𝑨𝒊𝒊 ∩ 𝑩𝑩𝒊𝒊|
|𝑨𝑨𝒊𝒊| + |𝑩𝑩𝒊𝒊|

 

Figure 10: Dice coefficient definition 

Where 𝒊𝒊 stands for a region type, 𝑨𝑨𝒊𝒊 and 𝑩𝑩𝒊𝒊 denote the set of pixels labeled into 𝑖𝑖 by the “ground truth” and MRI 

segmentation, respectively, and |𝑨𝑨𝒊𝒊|  denotes the number of elements in 𝑨𝑨𝒊𝒊.The Dice coefficient is in the range 0 

≤ 𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫 𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝒊𝒊 ≤ 1 and has a value of 0 if there is no overlap between the two segmentations and 1 if 

both segmentations are identical. 

4. Conclusion 

The segmentation of brain MR images is an important but challenging step in medical image analysis in both 

clinical and research areas. From 3D MRI data visualization to structural MR data analysis, brain segmentation 

represents an essential step in the process. Various techniques, such as threshold-based, machine learning-based 

or hybrid methods, have been developed and optimized to perform brain parcellation. However, not all 

techniques produce a high accuracy rate, which is due to a variety of issues. For instance, supervised machine 

learning methods require enough labeled data (ground truth) to train a model than can segment the brain with a 

high accuracy rate. As mentioned above, providing the ground truth by manually segmenting the data is a time-

consuming approach. Consequently, unsupervised machine learning using unsupervised methods, or so-called 

clustering algorithms, are of greater interest. The extant literature reveals that several successful segmentation 

cases in which fuzzy c-means (FCM) was utilized have been reported. Furthermore, researchers have indicated 

that by combining various methods to develop hybrid algorithms, they have achieved more robust segmentation 

methods that yield higher accuracy rates. 
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