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Abstract 

In this article, numerical solution of Volterra integral equations is considered. A new approach in the application 

of spectral method is proposed, wherein Chebyshev polynomial of the first kind )(xTk
 serves as the basis 

function. Essentially, the method is based on the approach of series solution where coefficients of )(xTk  in the 

residual equations are correspondingly equated to yield system of equations. Expression for error estimates 

which effectively serves as upper bound for accrued errors is arrived at. To illustrate the accuracy and 

effectiveness of the method and its error estimates, numerical examples on some standard integral equations are 

given. 

Keywords: Spectral method; Chebyshev basis function; Coefficients; Volterra Integral equations;Error 

estimates. 

1. Introduction 

On a general note, the term integral equation refers to an equation where an unknown function occurs under an 

integral.  

------------------------------------------------------------------------ 

* Corresponding author.  

http://asrjetsjournal.org/


American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2017) Volume 30, No  1, pp 47-56 

 

48 
 

The standard type of such equation in )(xu is of the form: 

)1()()(),()()( ∫ =+
b

a

xfdttutxkxux λa  

Where a and b are limits of integration, λ  is a constant parameter. ),( txk   is a known function of 2 

variables called the kernel or the nucleus of the integral equation. It is defined in the square:   

{ }btabxatx ≤≤≤≤=Π ,:),(  

)(xf  is a given function that corresponds to an external force acting on the system. If )(xf  is identically 

zero, the resulting equation is called homogeneous.      

 Solving equation (1) amounts to determining a function )(xu such that (1) is satisfied for all points within the 

interval; bxa ≤≤ .  (Herman Brunner [1]). 

As established by Grewal [2], as it is for differential equations, there are several integral equations for which 

analytic solution is not feasible, even in the availability of such solutions, the computation cost may be so 

enormous that numerical approach becomes the best and most viable alternative. The aim of this work is 

however to introduce a new technique in the application of spectral methods such that the method will yield 

approximate solution that is efficient, effective and with minimal computational cost.   

Spectral methods are based on the representation of a real, continuous function )(xf  on some interval as an 

expansion in an orthogonal set of functions )(xnφ   i. e  
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Where the polynomials )(xφ  are orthogonal i. e. 
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b
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With )(xw  as the weight function and the kronecker delta is defined by: 
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As illustrated in [3], the function of interest )(xu is approximated with the finite sum  
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Where )(xTk is the Chebyshev polynomials of the first kind and kc  are coefficients of expansion. This is 

directly obtained from Fourier cosine series in Chebyshev polynomial form. (see ref [2][3][4][5]).  The 

expansion coefficients kc  are occasionally referred to as the generalized Fourier coefficients. As exemplified in 

[3], one clear advantage that spectral methods have over finite difference methods is that once approximate 

spectral coefficients have been found, the approximate solution can immediately be evaluated at any point in the 

range of integration, whereas to evaluated a finite-difference solution at an intermediate point requires a further 

step of interpolation. In addition, it has been established over the years that these methods possess ability to 

tackle a wide variety of problems. In particular, they yield accurate results with only moderate computational 

resources.  

2. Classification of Integral Equations 

Integral equations appear in many varieties, the types depend mainly on the limits of integration, the kernel of 

the equation and the appearance of unknown function )(xu . If the limits of integration are fixed, the integral 

equation is called a Fredholm integral equation, a typical example is given in equation (1), where a and b are 

constants. But if at least one limit is a variable, the equation is called a Volterra integral equation given in the 

form: 

)6()()(),()()( ∫ =+
x

a

xfdttutxkxux λa  

In addition to this, integral equations can further be classified into 2 kinds taking the following generic forms:

   

)7()()(),(∫ =
b

a

xfdttutxk  

That is    0≡a   in equation (1) such that u  appears only under the integral sign the integral equation is called 

a Fredholm integral equation of the first kind.  

However, for Fredholm integral equations of the second kind, 0≠a  hence the unknown function u appears 

both inside and outside the integral sign. This therefore takes the form: 

)8()()(),()()( ∫ =+
b

a

xfdttutxkxux λa  
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3. Evaluation Of Chebyshev Terms 

Throughout the course of this work, we constantly need to express product like )()( xTxf k  and the integral of 

)(xTk . For the evaluation of such terms it has been observed that for an efficient and stable execution, the secret 

is to avoid rewriting Chebyshev polynomials in terms of powers of x and to operate wherever possible with the 

Chebyshev polynomials themselves (Clenshaw [6]). As a result of this, this work is based on expressing all 

terms in the equation in series of Chebyshev polynomials. 

For the integral of )(xTk , to allow for effective evaluation, we express this as follows:  
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Also it is frequently necessary to be able to multiply Chebyshev polynomials by factors such as 
211, xandxx −−  and to express the result in terms of Chebyshev polynomials. 
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On a general note, expression for )(xTx k
m  , as illustrated in [3], is given by: 
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In circumstances where the variable coefficient is a non-polynomial term, we adopt a technique in [4] for the 

expression of )()( xTxf k  where )(xf  is first written in Taylor series form. 
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Also, the power nx  that makes up )(xf  on the LHS of equation (1) is expressed in terms of the Chebyshev 

polynomials of degrees up to n. As established by Mason and Handscomb [3], this is given by: 

 

∑
=

−
−









=

2

0
2

1 )12()(2
n

k
kn

nn xT
k
n

x  

4. Spectral Methods 

Spectral methods are part of several methods founded on orthogonal expansions, in this study we consider the 

expansions in Chebyshev polynomials of the first kind. In this method, the idea is to write the solution to the 

integral (1) as a series of “Chebyshev basis functions” i. e. 

)13()()(ˆ
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kkn xTccxu  

Equation (13) is referred to as the trial solution while the expansion coefficients { }kc is referred to as the 

spectral space representation of the function.  

It is to be noted that the implementation of spectral methods is normally accomplished with either Collocation, 

Galerkin or a Tau approach. (See ref [1][5][9][10]). But in this study, a new approach of factorizing the 

coefficients is applied as an implementation technique.  

Equation (13) is substituted into (1) to yield: 
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With the aid of approaches in ([4][6][8]) products like )()( xTx ka  and integral ∫ )(),( xTtxk k  are easily 

resolved into series of Chebyshev polynomials. Also )(xf  whether as polynomials, trigonometry, exponential 

and logarithmic function is easily resolved into series of Chebyshev polynomials. Equation (15) therefore 

becomes an equation in series of Chebyshev polynomials )(xTk  of varying degree on both sides. Coefficients of 

each )(xTk  are thereafter equated correspondingly to yield a system of equations: 

)16(bXA =  
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Where A is the matrix of coefficients, X is the column vector containing the expansion coefficients }{ nc  and b 

is the corresponding coefficients of )(xTk
 after )(xf  has been converted into series of Chebyshev 

polynomials. 

Solving (16) using any algebraic solution methods yields numerical values for nccc ...10 .These are 

thereafter substituted into (5) to yield an approximate solution to integral equation (1). 

5. Error Estimates 

There are several studies concerning the convergence of spectral methods. These include (Cheney [7], and 

Wazwaz [9]). Discussion on the theory of approximation from an historical perspective can be found in [8]. The 

minimax property of )(xTk  enhances the series in the trial solution to provide an accurate approximation to 

)(xu  with small number of terms. 

However, it is to be noted that if the method is efficient, the absolute values of the coefficients nc  decrease 

rapidly with increasing n, this is realised in this work and error estimate based on the sizes of Chebyshev 

coefficients is established. 

It is vividly observed in the course of this work that the resulting errors from the solved problems yield error 

estimate that is governed by: 

)17(1
0

−≤ nccE nn  

6. Numerical Experiment 

The described method with our new approach are applied to six test problems listed below. This is basically to 

illustrate the efficiency of this technique and also to compute exact error which will serve to determine the 

validity of the formulation for error estimates. 

Example 1.    

∫ −=+−+
x

xx dttytxexex
0

)()(22
 

The analytical solution is  xexxy =)(  

Example 2.    
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∫=+++−−
x

x dttytxxxxx
0

22 )(2)1(ln)1(ln
2
1  

The analytical solution is  )1(ln)( xxy +=  

Example 3.  

∫ −+−−=
x

x dttytxxexy
0

)()(22)(
 

The analytical solution is  xexxy =)(  

Example 4.    

10;
22

31)(
1
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The analytical solution is  21)( xx −=φ  

Example 5.    

∫ −−= −
x

x dttytxexy
0

)()(cos2)(
 

The exact solution is  
2)1()( xexy x −= −

 

Example 6.    

∫ −−=
x

dttxtyxxy
0

)(sin)(34)(  

The exact solution is  xxxy 2sin
2
3)( +=  

 

7. Numerical Solutions to the Problems 

In this section, maximum error with the corresponding error estimates obtained by the use of equation (17) are 

tabulated for each solved problem.  
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    Table 7.1: Table of errors for example 1 

n Maximum error Error estimates 

4 9.1817e-004 1.1880e-003 

6 1.2914e-006 2.4433e-006 

8 5.0494e-010 1.6489e-009 

10 4.0378e-014 2.5328e-012 

Table 7.2: Table of errors for example 2 

n Maximum error Error estimates 

4 4.5330e-004 6.1294e-004 

6 2.0426e-005 3.5974e-005 

8 4.8223e-008 3.4838e-007 

10 3.9632e-010 5.7352e-009 

Table 7.3: Table of errors for example 3 

N Maximum error Error estimates 

4 3.0502e-004 1.2616e-003 

6 6.6005e-007 2.5637e-006 

8 5.7364e-010 2.8154e-009 

10 5.0188e-013 1.1451e-012 

Table 7.4:Table of errors for example 4 

N Maximum error Error estimates 

4 0 0 

6 0 0 

8 0 0 

10 0 0 

Table 7.5: Table of errors for example 5 

N Maximum error Error estimates 

4 5.4303e-004 1.2406e-003 

6 4.2182e-006 8.1274e-005 

8 2.8226e-009 3.2139e-008 

10 3.6431e-011 4.1236e-010 
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Table 7.6: Table of errors for example 6 

N Maximum error Error estimates 

4 9.6371e-004 4.2969e-002 

6 5.2162e-006 3.8471e-005 

8 1.3432e-008 3.9476e-007 

10 1.4832e-010 6.4312e-009 

 

8. Conclusion 

The Spectral method with a new implementation technique has been proposed and applied to integral equations. 

Formulation for error estimates with the use of spectral coefficients has also been established. A look at table 

7.1 – 7.6 shows that the technique performs effectively well in the solution of these problems as the produced 

errors are very minimal. In addition to this, a consideration of this technique depicts the simplicity in its 

application and a very low computational cost.   

The above tables equally depicts that the formulation for error estimates is very efficient in application as it 

provides a reliable bound for the computed error. 

Also, the assertion of [9] about the convergence of spectral methods is equally observed in this technique as 

values for kc  progressively and rapidly drops as k increases. 
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