

90

 American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS)
ISSN (Print) 2313-4410, ISSN (Online) 2313-4402

© Global Society of Scientific Research and Researchers
http://asrjetsjournal.org/

Grass Root Algorithm Optimize Neural Networks for

Classification Problem

Prof. Dr. Hanan A.R. Akkara, Firas R. Mahdib*

a,bElectrical Engineering Department, University Of Technology, Baghdad, Iraq
aEmail: dr_hananuot@yahoo.com

bEmail: firasrasool1980@gmail.com

Abstract

Artificial neural networks are computational models that trying to emulate the structure and functions of

biological human networks. They have been extensively used in many applications include science, business,

engineering, and data mining. Learning of an artificial neural network means how to adapt the weights of the

network interconnections using suitable adaption algorithm. The training algorithms that is used to modify the

weights of the network are considered the most important portion that influences the artificial networks

performance. In the past few decade, many meta-heuristic algorithms have been used to optimize networks

synaptic weights, in order to achieve better performance. This paper proposes a general network training method

based on population-based algorithms, proposes a novel meta-heuristic algorithm that is inspired by the general

grass plants root system to optimize the weights of the proposed artificial network to classify real data four

classes XOR and Iris data comparing the obtained results of the proposed algorithm with other familiar

evolutionary meta-heuristic algorithms.

Keywords: Artificial neural networks; Classification; Grass root algorithm; Meta-heuristic techniques;

Optimization; Population-based algorithms.

1. Introduction

Artificial Neural Networks (ANNs) are information processing systems that have common characteristics with

human biological networks.

--

* Corresponding author.

http://asrjetsjournal.org/

American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2016) Volume 26, No 4, pp 90-100

91

They have been widely used in many life applications such as medicine [1], financial [2], data mining [3], and

industrials [4]. The most significant concern related to this concept is how to train the network to optimize a

solution with the most trained weights. Learning of ANN is the process of adjusting the interconnection weights

of the neurons. One of the most familiar training algorithms is the Error Back Propagation algorithm (EBP),

this algorithm has been widely used for the network training purpose. However, it appears to be suffering from

several problems such as easily trapped into local minima, and its low convergence speed [5]. Many types of

research have been tried to improve the performance of the EBP, while other have just left this concept and

used other meta-heuristic algorithms instead of EBP in the training phase. Therefore, many meta-heuristic

algorithms have been developed and applied to raise the performance of the training process such as: Genetic

Algorithm (GA) [6], Differential Evolution Algorithm (DEA) [7], Simulated Annealing (SA) [8], Artificial Bee

Colony (ABC) [9], and Particle Swarm Optimization (PSO) [10]. This paper aims to propose a general method

for optimizing Neural Networks (NNs) weights connections using population-based Grass Root Algorithm

(GRA), that is proposed by the author, to classify four classes XOR problem, and 3 classes Iris real data sets

comparing the results with other familiar population-based algorithms used for the same purpose.

2. Materials and Methods

This paper uses a novel GRA to optimize an ANN weights interconnections to classify a real data four classes

XOR problem and three classes Iris data set, comparing the obtained results with other population-based

algorithms. The materials and methods used for that purpose are illustrated in the following sub-sections.

2.1. Multilayer Perceptron

Multilayer Perceptron networks (MLPs) are popular feed-forward supervised ANNs. They consist of the input

layer, an output layer, and one or multiple hidden layers. Usually, One hidden layer is sufficient to solve almost

all types of problems. Two or more processing hidden layers rarely improve the network efficiency, also they

may lead for trapping into a local minima solution. However, all hidden and output neurons are actually

considered as the processing elements of the network. Each network layer is usually fully connected to the next

layer, and it consists of multiple neurons, their number varies according to the problem the network used to

solve. Each processing element neuron consists of multiplayer, adder, and activation function. Usually, each

processing layer has the same activation function for all of its elements, neurons may have a linear identity

activation function or nonlinear activation function such as hyperbolic tangent, logistic and Gaussian. One of the

most important problems associated with NNs learning process is the overfitting, which usually occurs due to

using too many neurons in the hidden layer, or when the ANN has too much information and the amount of

input data patterns is not enough to justify all the neurons weights in the hidden layers at the required time.

Another problem occurs when the training data set is satisfactory, but the amount of training time rise to a point

that it is impossible to sufficiently learn the ANN. Therefore, some compromise must be reached between too

many and few neurons in the hidden layers, another compromising method represented by regularization the

network by modifying the performance function, which in most cases chosen to be the Mean Square Error

(MSE) of the network. Once the number of neurons and hidden layers selected, the network's weights must be

optimized to minimize the error made by the network. This is the role played by the training algorithms [11].

American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2016) Volume 26, No 4, pp 90-100

92

2.2. Metaheuristic Algorithms

Meta-heuristics are techniques that allow optimizing large and complicated problems by delivering satisfactory

and feasible solutions in an acceptable processing time. These techniques have no guarantee to find the global

optimal solution. Unlike exact methods, they have the ability to solve large and complex problems. They have

been used in many applications such as machine learning, data mining, system modeling, and robotics. Each

meta-heuristic algorithm must have a tradeoff between, two contradictory features; diversification which is the

exploration of the search space and intensification that represents the exploitation of the best solutions found so

far. In intensification, the promising regions are explored more locally in the hope of finding better solutions.

Meta-heuristic algorithms could be classified as population or single based search algorithm, these two families

have complementary characteristics: single solution based meta-heuristics have the power to intensify the search

in local regions only while population-based meta-heuristics allows better diversification in the whole search

space [12]. Population-based meta-heuristic algorithms depend on initial random population, each individual in

this population is a candidate solution. A new population of solutions is created, based on evolution or adapting

blackboard algorithm. The evolution based reproduction of population using multiple of operators such as;

crossover, and mutation. Therefore, a new population is generated from different attributes of the current

population. Blackboard-based population generation depends on shared memory constructed from the previous

population. The selection of the best solution will depend on the fitness value of the applied objective function

after a set of rules that govern the population and redirect it towards an optimum or near optimum solution [13].

2.3. Grass Root Algorithm

Optimization is a mathematical technique that finds the best solution to a constrained problem, while an

optimization problem is how to find variables that minimize or maximize an objective function, these variables

must satisfy optimization function constraints. Many optimization problems have more than one local solution,

therefore it is important to choose a good optimization method that has a good tradeoff between global and local

search mechanisms without being trapped into a local minima solution. Grass Root Algorithm (GRA) is an

optimization meta-heuristic population-based algorithm, it is essentially inspired from the grass plants

reproduction, development, and theirs fibrous root system. To understand the proposed algorithm searching

mechanism it's important to give a brief review for the reproduction and development of the grass plant.

Grasses are generally propagated through two ways; firstly by modified subterranean stems of the plant that is

usually found underground, sending out roots and shoots from its nodes that's called rhizomes, and secondly

through a stems that grow just below the surface. Both reproduction ways will simultaneously develop

secondary roots to replace the vanished primary roots. Hair roots are generated from secondary roots [14]. These

roots (primary, secondary, and hair roots) are usually used for global and local searching of water resources and

minerals. However, in GRA the global search will be performed at each iteration, while the local search

performed when the global search is in stack condition or it does not lead to more improvement in the objective

function. GRA has two different mechanisms for global search; survived grasses and the best obtained grass

modified and reproduced. On the other hand, local search will have another two searching methods; regenerated

secondary roots and secondary hair roots.

American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2016) Volume 26, No 4, pp 90-100

93

2.3.1. GRA model governs rules

Grass plants with rhizomes and stolons execute a global and local search to find better resources by reproduce

new grass plants and modifying their own fibrous root system. Both the generated new grasses and their roots

are developed almost randomly, but when a root arrives at a place with more resources, the corresponding plant

generates more secondary roots, and root's hair, which made the plant growth faster than other. If a grass plant

trapped into a local minima point it will generate more new grasses by stolons initiated from the best-obtained

grass and from other grasses survived from the initial population process, these stolons are in general longer

than rhizomes, which help the plant reaching farther places and escaping from local minima position.

2.3.2. GRA Mathematical Model

Just like other meta-heuristic optimization algorithms, GRA starts with an initial random uniformly distributed

population swarm(pop,ndim) in the search space domain of the problem, each row vector of swam initial matrix

represents a grass initiated by seeding process. The number of initial grass plants is considered equal to the

population size (pop). When iteration (iter) starts a new population NewSw(pop,ndim) will be generated, this

new population will consist of; the fittest obtained grass represented by Gbest = min(f (swarm)) ∈ Rndim, f :

Rndim → R , where f is the mean square error (MSE) function, ndim is the problem dimension, swarm and NeSw

are bounded population in the range of lb(pop,ndim) ≤ swarm, NewSw ≤ ub(pop,ndim), where ub, lb ∈ Rndim are

two matrices indicating the lower and upper bounds of population variables. The second element of the new

population NewSw is a number (GN) of grasses deviated from Gbest by stolons (GrassBranches), these stolons

usually deviated from the original grass with step size usually less than maximum ub, the last element of the

NewSw are a new grasses equal to (pop – GN-1) deviated randomly from the survived best initial grasses

(Survived deviated).

𝐺𝐺𝐺𝐺 = �� 𝑎𝑎𝑎𝑎𝑎𝑎(𝒎𝒎𝒎𝒎𝒎𝒎)
𝑎𝑎𝑎𝑎𝑎𝑎(𝒎𝒎𝒎𝒎𝒎𝒎)+𝑚𝑚𝑚𝑚𝑚𝑚(𝒎𝒎𝒎𝒎𝒎𝒎)

 � ∗ �𝑝𝑝𝑝𝑝𝑝𝑝
2

 �� (1)

Where GN is the number of the newly generated grass branches (stolons) from Gbest, and mse is the mean

square error value of all grass population. From (1) we notice that the maximum generated new grass branches

will be equal to (pop/2) and reached when the minimum of mse is too small. Each new branch grass deviated

from Gbest according to (2), while the survived deviated grasses will be represented by:

GrassBranches = ones(GN,1) * Gbest + 2 * max(ub) * (rand(GN,1) - 0.5) * Gbest (2)

Surviveddeviated = GrassSurvived + 2 * max(ub) * (rand(pop–GN–1,1) - 0.5) * ub (3)

where ones(c,1) represents one's column vector with c rows, and rand(c,1) is a random column vector with c

rows their elements greater than 0 and less than 1. Grasssurvived is the (pop-GN-1) highest mse initial population.

The new population (NewSw) will be represented by (4) and (5).

NewSw = [GbestT, GrassBranches
T , Surviveddeviated

T]T (4)

American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2016) Volume 26, No 4, pp 90-100

94

Which is the same as:

NewSw = [Gbest ; GrassBranches ; Surviveddeviated] (5)

The new reproduced population (NewSw) will be checked to find the grass with minimum mse and bounded it to

be within the limits of ub and lb, If the fittest new grass is best than the old one then save the fittest new grass as

the best solution, otherwise calculate the absolute rate of decrease in mse between the best obtained so far

minimum mse (bestminmse) shown in (6) and the current iteration minimum mse (minmse) shown in (7), if the

rate is less or equal a predefined tolerance value (tol) as in (8), than increase a global stack (stackg) counter by

one, when stackg reached its maximum predefined value then move to the next local search mechanism.

minmse = mini=1,…,pop (mse) (6)

bestminmse=min j=1,…,iter (minmse) (7)

� 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚−𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

 ≤ 𝑡𝑡𝑡𝑡𝑡𝑡 � (8)

The local search mechanism consists of two individual loops; secondary roots loop, and hair roots loop. We

have considered that the hair roots are equal to the dimension of the objective function problem (ndim) so that

each secondary root generated by the Gbest represents a local candidate solution. The secondary roots will be

represented by a random number, these secondary roots will have a number of hair roots equal to ndim, each

single hair root will modify its location according to (9) for a repeated loops equal to secondary roots number

(S).

m_gbest(1,i)i=1,..,ndim
k=1.,.,S = avg(Gbest) + Gbest(1,i)i=1,.,ndim + C2 * (rand-0.5) (9)

C = [C1 , C2 , C3 , C5 , …., C9 , C10] (10)

Cc = C(1+ (‖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∗ 10‖)) (11)

Where mgbest is the locally modified Gbest element by element, S is the number of secondary generated roots

where (0 ≤S≤ ndim), and C is the searching step size vector equation (10), and Cc will be a random element of C

chose according to the percentage repetition of C elements, as shown in (11). If the evaluated mgbest min(mse)

is less than bestminmse then save Gbest as mgbest, otherwise calculate the absolute rate of decrease in mean square

error as in (7), if the rate is less than tol then increase local stack counter (stackl) by one, if stackl reached its

maximum predefined value then break hair root loop and begin new secondary root loop, after each completed

iteration check if the stopping condition (GlobalError) is satisfied then stop iteration, otherwise go to next

iteration until reached the maxit then stop. The pseudo code of GRA are as follow:

2.3.3. GRA for NN Weight Optimization

GRA is a population based meta-heuristic algorithm, in which each Swarm contains a pop number of candidate

American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2016) Volume 26, No 4, pp 90-100

95

solutions each with ndim dimensions, for NN case we have considered the weights vector of the supervised

network is the problem that needs to be optimize in order to get the minimum mean square error between the

network output and its predefined target. Suppose the input is input(N, n), target(N, m) is the target teacher.

Therefore, N is the total input patterns, n is the number of input neurons, and m is the output neurons number.

suppose l is the hidden neurons number, then the NN dimension with bias connections ndim will be represented

by:

ndim = (n * l + l) + (l * m + m) (12)

Table 3

Initialize: maxit, pop, ndim, lb, ub, GlobalError, tol, stackg, stackl, BranchGrass, C, Gbest, minmse, bestminmse ,

GN, F.

Initialize random grass population (Swarm). where: Swarm∈ Rndim

Bound the initial population lb≤ 𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 ≤ 𝐮𝐮𝐮𝐮 where: ub, lb ∈ Rndim.

For i=1 : pop // check for best fitness particle in the initial population.

mse(i)= F(Swarm) // F is the MSE predefined function

End For

Sort the grass population (Swarm) ascending according to mse.

For iter=1 : maxit // Iteration and global search starting

Evaluate C2 according to (8)

Generate the new population (NewSw) according to (4).

Bound NewSw : lb≤ 𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍 ≤ 𝐮𝐮𝐮𝐮 where:NewSw, ub, lb ∈ Rndim

For i=1: pop // check the NewPar for the best fitness particle loop

Mse(i)=F(NewSw)

End For

 Minmse=min(Mse) // Save minimum mean square error

 Index the grass with the Minmse // Index the position of the best particle in the population.

Evaluate GN as in (1). // GN is the number of stolons branches.

Evaluate 𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐬𝐬𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝐁 as in (2).

Evaluate the GrassSurvived from the ascending sorted Swarm.

Evaluate 𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝 as in (3).

If Minmse < bestminmse then

bestminmse=Minmse

Gbest=best indexed grass

stackg=0

Else If (7) is true then

increase stackg by 1

If stackg is at its maximum then

stackg= 0 // Begin the local search

American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2016) Volume 26, No 4, pp 90-100

96

For q=1:random integer less than D // secondary root loop

Stackl=0

For j=1:ndim // hair root loop

mgbest=Gbest //initial mgbest

evaluate mgbest as in (8)

localmin = F(mgbest)

If localmin<bestminmse then

bestminmse=localmin

Gbest=mgbest

stackl=0

Else If (7) (with localmin instead of minmse) is true then

Increase stackl by one

Else

stackl=0

End If

If stackl is at its maximum then

Break For

End If

End For (j loop)

End For (q loop)

End If

End If

bestminmse=F(Gbest)

If best_minmse ≤ GlobalError then

break For (iter loop)

End If

End For (iter loop)

suppose weight(1,ndim) is the NN weight vector, then the input to hidden weight vector could be represented by

(13) and the hidden to output weight is represented by (14), while (15) represents the BIAS vector.

W = [weight(1), weight(2), ……, weight(n*l+l)] (13)

V = [weight(n*l+l+1), weight(n*l+l+2),…,weight(ndim)] (14)

BIAS = [bias*ones(N,1)] (15)

Reshape W, and V vectors into matrix form, then they will be Wx(n+1, l), and Vy(l+1,m). The input and vector

matrix could be represented by:

American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2016) Volume 26, No 4, pp 90-100

97

X= [BIAS, Input] (16)

Applying log sigmoid to the output of the hidden layer and add BIAS vector to the hidden output, and

evaluating the hyperbolic tangent of the network output as in (17), (18), and (19) respectively.

𝒁𝒁 = 1
1+ 𝑒𝑒−(𝑿𝑿∗𝑾𝑾𝑾𝑾) (17)

H = [BIAS, Z] (18)

Y = 2
1+𝑒𝑒−2(𝑯𝑯∗𝑽𝑽𝑽𝑽) − 1 (19)

The MSE between the NN output and the desired target is shown in (20), while the Average MSE (AMSE) of all

network neurons output is shown in (21).

MSE = 1
𝑝𝑝𝑝𝑝𝑝𝑝

∑ (𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑖𝑖) − 𝑌𝑌(𝑖𝑖))2𝑖𝑖=𝑝𝑝𝑝𝑝𝑝𝑝
𝑖𝑖=1 (20)

AMSE= 1
𝑚𝑚

 ∑ 𝑀𝑀𝑀𝑀𝑀𝑀𝑇𝑇(𝑖𝑖)𝑖𝑖=𝑚𝑚
𝑖𝑖=1 (21)

3. Experiments and Results

We have carried out two experiments to test GRA, and the proposed training method also compares it with other

familiar meta-heuristic population-based algorithms. The first experiment was to classify four classes XOR,

with 100 instances for each class, and 3 attributes. The second experiment has applied to classify real iris data,

which consists of 3 classes each with 50 instances and four attributes. For both experiments we have divided the

input pattern data into two sets; 80% of input data for training, and 20% for testing, so that we can discover if an

overfitting occurs during training process. Recording the Average Classification Rate (ACR), Average Training

Mean Square Error (ATRMSE), Average Testing Mean Square Error (ATEMSE), Average Error between MSE

of Training and Testing data sets (AETT), Average Processing Time (APT) in seconds, and the Average

number of required Iterations (AITER) to reach 100% classification rate for both of the experiments. For the

XOR experiment we have used a NN with 3 input, 6 hidden, and 2 output neurons, while for the 2nd experiment

we have used a network with 4 input, 5 hidden and 2 output neurons. If any algorithm reached 100%

classification rate then the training will be stopped immediately. We have carried out 10 epochs for each

algorithm each epoch has 100 maximum training iterations. The algorithms used to train the NN are; PSO, GA,

BCA, DEA, Wind Driven Optimization (WDO) [15], Cuckoo Search Algorithm (CSA) [16], and the proposed

GRA. Table (1) stands for algorithms performance for the 1st experiment it shows that GRA has gotten the

highest ACR with the minimum required; iterations number and average processing time. Table (2) stands for

the 2nd experiment algorithms performance it shows that GRA has gotten the highest ACR with the minimum

required iterations, but with the highest required average processing time. Figs. 1, and 2 show the convergence

curves for single epoch (100 iterations) of the tested algorithms and for both experiments, they show that GRA

algorithm has much faster convergence than other tested algorithms, also it reaches an acceptable solution

within fewer iterations number.

American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2016) Volume 26, No 4, pp 90-100

98

Table 1: 1st experiment algorithms performance

Alg. ATRMSE ATEMSE AETT ACR % APT (sec) AITER

BCA 0.1414 0.1470 7.64E-03 75.63 3.03 100

CSA 0.1593 0.1601 9.92E-03 67.08 2.64 100

DEA 0.1981 0.2110 1.37E-02 55.97 4.75 100

GA 0.1333 0.1404 7.11E-03 83.44 1.51 100

GRA 0.1018 0.1048 4.39E-03 100.0 1.39 16.67

PSO 0.1775 0.1864 9.06E-03 57.26 1.51 100

WDO 0.1528 0.1599 7.16E-03 69.31 1.46 100

Table 2: 2nd experiment algorithms performance

ALG. ATRMSE ATEMSE AETT ACR% APT (sec) AITER

BCA 0.09094 0.09513 0.00612 86.02 2.43 100

CSA 0.08357 0.0884 0.00747 79.17 2.09 100

DEA 0.12359 0.12365 0.00417 57.22 3.78 100

GA 0.07634 0.08022 0.00717 84.44 1.28 100

GRA 0.05567 0.0569 0.00477 95.56 3.29 96.3

PSO 0.09746 0.09924 0.0051 70.46 1.165 100

WDO 0.08833 0.09293 0.00693 80.28 1.158 100

Figure 1: 1st experiment algorithms convergence curves .

American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2016) Volume 26, No 4, pp 90-100

99

Figure 2: 2nd experiment algorithms convergence curves.

4. Conclusions

This paper has proposed a new meta-heuristic population-based algorithm for training ANN to classify 4 classes

XOR and Iris data set comparing it with another familiar algorithm in that field. The proposed algorithm has

been inspired from the reproduction and root system of general grass root. In the 1st experiment, we have found

that GRA has gotten the highest 100% ACR, with the minimum required iteration number of 16.67 hence it has

recorded the minimum required processing time with the minimum average training MSE and the average

testing MSE. For the second experiment, GRA has gotten the highest 95.56% ACR, the minimum iteration

number of 96.3, and the minimum average training and testing MSE. On the other hand, it has recorded a high

average processing time 3.29 sec as compared to other algorithms (1.28 sec and 2.43 sec) that have gotten an

acceptable ACR (84.44 % and 86.02%).

References

[1] E. Tileylioglu and A. Yilmaz, "Application of neural based estimation algorithm for gait phases of

above knee prosthesis," Engineering in Medicine and Biology Society (EMBC), 2015 37th Annual

International Conference of the IEEE, pp. 4820-4823, Milan, 2015.

[2] W. Shuhui, "A Novel Company Financial Risk Warning Method Based on BP Neural Network,"

Intelligent Computation Technology and Automation (ICICTA), 2014 7th International Conference on,

pp. 32-35, Changsha, 2014.

[3] J. Wang, F. Zhang, F. Liu and J. Ma, "Hybrid forecasting model-based data mining and genetic

algorithm-adaptive particle swarm optimisation: a case study of wind speed time series," in IET

Renewable Power Generation, vol. 10, no. 3, pp. 287-298, 2016.

[4] A. Rubaai and P. Young, "Hardware/Software Implementation of Fuzzy-Neural-Network Self-Learning

Control Methods for Brushless DC Motor Drives," in IEEE Transactions on Industry Applications, vol.

American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2016) Volume 26, No 4, pp 90-100

100

52, no. 1, pp. 414-424, Jan.-Feb. 2016.

[5] M. Gori and A. Tesi, "On the problem of local minima in backpropagation," in IEEE Transactions on

Pattern Analysis and Machine Intelligence, vol. 14, no. 1, pp. 76-86, Jan 1992.

[6] L. Hu, L. Qin, K. Mao, W. Chen and X. Fu, "Optimization of Neural Network by Genetic Algorithm for

Flowrate Determination in Multipath Ultrasonic Gas Flowmeter," in IEEE Sensors Journal, vol. 16, no.

5, pp. 1158-1167, March1, 2016.

[7] Slowik A.; Bialko M., "Training of artificial neural networks using differential evolution algorithm,"

Human System Interactions, 2008 Conference on , vol.60, no.65, pp. 25-27, May 2008.

[8] K. Bai and J. Xiong, "A Method of Improved BP Neural Algorithm Based on Simulated Annealing

Algorithm," Genetic and Evolutionary Computing, 2009. WGEC '09. 3rd International Conference on,

Guilin, 2009, pp. 765-768.

[9] C. Worasucheep, "Forecasting currency exchange rates with an Artificial Bee Colony-optimized neural

network," Evolutionary Computation (CEC), 2015 IEEE Congress on, Sendai, 2015, pp. 3319-3326.

[10] L. Zhang, J. Ma, Y. Wang and S. Pan, "PSO-BP Neural Network in Reservoir Parameter Dynamic

Prediction," Computational Intelligence and Security (CIS), 2011 Seventh International Conference on,

Hainan, 2011, pp. 123-126.

[11] Gaurang P.; Amit G.; Y P K.; and Devyani P., '' Behaviour Analysis of Multilayer Perceptron's with

Multiple Hidden Neurons and Hidden Layers,'' International Journal of Computer Theory and

Engineering, vol. 3, no. 2, April 2011.

[12] E. Talbi, '' Common Concepts for Metaheuristics'', in Metaheuristics : from design to implementation,

John Wiley & Sons, Inc., Hoboken, New Jersey, 2009, ch.1, pp.23-25.

[13] E. Talbi, '' Population-Based Metaheuristics, in Metaheuristics : from design to implementation, John

Wiley & Sons, Inc., Hoboken, New Jersey, 2009, ch.3, pp.190-200.

[14] C. Stichler, '' Grass Growth and Development,'' Texas Cooperative Extension, Texas A&M University,

SCS-2002-22.

[15] Z. Bayraktar, M. Komurcu and D. H. Werner, "Wind Driven Optimization (WDO): A novel nature-

inspired optimization algorithm and its application to electromagnetics," Antennas and Propagation

Society International Symposium (APSURSI), 2010 IEEE, Toronto, ON, 2010, pp. 1-4.

[16] R. A. Vazquez, "Training spiking neural models using cuckoo search algorithm," Evolutionary

Computation (CEC), 2011 IEEE Congress on, New Orleans, LA, 2011, pp. 679-686.

