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Abstract 

This paper aims at comparing the concept of data depth to classification and classification by projection pursuit 

using method of linear discriminant function. These two methods allow the extension of univariate concepts to 

the field of multivariate analysis. In particular they open the possibility of non-parametric methods to be used in 

multivariate data analysis. In this study, six simulated and one real life data sets were studied and, we observed 

that projection pursuit method is more optimal in classifying objects into their original groups. 

Keywords: Variance-covariance matrix; Data depth; Spatial or L1 depth; Linear Discriminant analysis; 

Probability of  Misclassification (PMC). 

1. Introduction  

Disriminant analysis is one of the most popular method of classification, which aimed at classifying new object 

whose true population is not yet known into one of the known populations whose characteristics were known 

and have been used to set up a classification function. The classification function is what is used in assigning 

new object into a population in which it belongs. When the populations are normally distributed parametric 

discriminant functions like Fisher linear and quadratic functions, Bayes discriminant functions and others can 

correctly classify an object into its true population. When the populations distribution are far from normal, or 

when the data are ill conditioned, parametric discriminant analysis may produce misleading results. For this 

reason it become necessary to look for a more robust method that can work well under so many unusual 

situations and this is what gave rise to non-parametric discriminant analysis methods.  

------------------------------------------------------------------------ 
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Though we have some semi-parametric methods like M-estimators, S-estimators, MCD estimators, MWCD 

estimators and MVE estimators etc that works well when the populations are not normally distributed but these 

still have their own impediments. Most of them are not optimal in classification in singular and near singular 

conditions of variance-covariance matrices of the populations and also when the data are ill conditioned.      

To solve singularity problem and other problems that are associated with sparse and multicollinear data, 

projection pursuit and data depth approaches came up as remedies. These methods aimed at reducing a high 

dimensional data set to low dimension so that the low dimensional data statistical tools can be applied.                                                                                                                                                                             

In this article we compared the performance of data depth method and projection pursuit method through several 

simulations and by applying them to a real data set. Their performance is assessed by comparing the probability 

of misclassification of the methods.   

This paper is organized into four Sections. Section one contains the introduction. Section two contains the 

materials and methods. Section three shows some illustrations and the results of the study. And section four 

contains the summary and conclusion of the study.  

2. Materials and methods 

2.1. Data depth  

Data depth is a modern nonparametric tool for the analysis of multivariate data. This method helps in reducing 

high dimensional data to low dimension where low dimension data statistical analysis can be applied. The 

concept of data depth is very important because it leads to a natural center-outward ordering of sample points in 

multivariate data sets. The notion of data depth was proposed by [1] as a graphical tool for visualizing bivariate 

data sets and has since then been extended to the multivariate case [2]. The depth of a point relative to a given 

data set measures how deep that point lies in the data cloud. The data depth concept provides center-outward 

ordering of points in any dimension and leads to a new nonparametric multivariate statistical analysis in which 

no distributional assumptions are needed.  

Most depth functions are robust and affine invariant making them well suited for the study of real life high 

dimensional data sets that may contain outliers. 

Recently there exist different types of data depth each with its different functional form. Some different types of 

data depth include  

• L1 or Spatial depth  

Let X be a p-dimensional random vector having distributional form xF . Then, the multivariate spatial or L1 

depth of 𝑥𝑥 ∈ 𝑅𝑅𝑝𝑝 relative to xF is defined as  

1( ; ) 1 ( ) /
xx FD x F E x X x X= − − −                (1)                                              
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Where xX F� , and 
.

 is the Euclidean norm.[3] 

The spatial depth function above is use in finding the depth of observation(s) in a data cloud of numerous p-

variate observations. This has attractive robustness and computational properties, and serves as a basis for useful 

non-parametric multivariate descriptive measures.  

• Mahalanobis depth 

Let 
xFµ  be a vector that measures the location of X in a continuous and affine equivariant, and x∑   

covariance matrix of Fx which depend on the distribution of Fx. Based on the estimates of location and scatter (

xFµ an x∑ ) a simple depth statistic is constructed, the Mahalanobis depth is given by 

𝑀𝑀𝑀𝑀(𝑋𝑋,𝐹𝐹𝑥𝑥) = [1 + (𝑥𝑥 − 𝜇𝜇𝐹𝐹𝑥𝑥)′Σ 𝑥𝑥
−1

(𝑥𝑥 − 𝜇𝜇𝐹𝐹𝑥𝑥)]−1                                                                      (2) 

The sample version of MD is  

𝑀𝑀𝑀𝑀(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛;  𝐹𝐹𝑥𝑥) = [1 + (𝑥𝑥 − �̅�𝑥)′𝑆𝑆𝑥𝑥−1(𝑥𝑥 − �̅�𝑥)]−1                                                                            (3) 

where �̅�𝑥 is the mean vector and 𝑆𝑆𝑥𝑥−1 is the empirical covariance matrix [4]                                                                                   

• L2- Depth 

L2-depth 𝑀𝑀2 is one of the depth function where the outlyingness of a point, and hence its depth, can be measured 

by a distance from a properly chosen center of the distribution. It is based on the mean outlyingness of a point, 

as measured by the L2 distance, 

𝑀𝑀2(𝑦𝑦|𝑋𝑋) = (1 + 𝐸𝐸‖𝑦𝑦 − 𝑋𝑋‖)−1                                                                     (4) 

where y is a data point whose depth you want to find and X is the entire data one is working on. For an 

empirical distribution on points 𝑥𝑥𝑖𝑖, where 𝑖𝑖 = 1, … ,𝑛𝑛 we have that 

𝑀𝑀2(𝑦𝑦|𝑋𝑋) = (1 + 1/n(Ʃ‖𝑦𝑦 − 𝑥𝑥𝑖𝑖‖))−1                                                              (5) 

L2-depth vanishes at infinity and is maximum at spatial median of X, which is the point that minimizes 𝐸𝐸‖𝑦𝑦 −

𝑋𝑋‖. If the distribution is centrally symmetric, the centre is spatial median; hence the maximum is at the centre.  

This depth converges in the probability distribution: For a uniformly integrable and weakly convergent sequence 

𝑃𝑃𝑛𝑛 → 𝑃𝑃 it holds that 𝑙𝑙𝑖𝑖𝑙𝑙𝑛𝑛𝑀𝑀(𝑦𝑦|𝑃𝑃𝑛𝑛) = 𝑀𝑀(𝑦𝑦|𝑃𝑃) 

L2-depth is invariant against rigid Euclidean motions, but not affine invariant. Then an affine invariant L2-depth 

is given by   
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𝑀𝑀2(𝑦𝑦|𝑋𝑋) = (1 + 𝐸𝐸‖𝑦𝑦 − 𝑋𝑋‖𝑆𝑆𝑋𝑋)−1                                                                          (6) 

𝑆𝑆𝑋𝑋 is a positive definite 𝑑𝑑 × 𝑑𝑑 matrix that depends continuously (in weak convergence) on the distribution and 

measures the dispersion of X in an affine equivariant way, that is,  

 𝑆𝑆𝑋𝑋𝑋𝑋+𝑏𝑏 = 𝐴𝐴𝑆𝑆𝑋𝑋𝐴𝐴 holds for any matrix A of full rank and any b. 

 A simple choice for  𝑆𝑆𝑋𝑋 is the covariance matrix of X [5].  

• Regression depth 

 The regression depth (r depth) of a fit 𝛽𝛽 relative to a data set 𝑍𝑍𝑛𝑛 is the smallest number of observations that 

need to be removed to make 𝛽𝛽 a nonfit. Equivalently, r depth (𝛽𝛽,𝑍𝑍𝑛𝑛) is the smallest number of residual that need 

to change sign to make 𝛽𝛽 a nonfit. 

The regression depth measures the quality of any candidate fit. Fits with higher regression depth fit the data 

better than do fits with lower regression depth. Hence, the regression depth ranks all possible fit from worst (r 

depth = 0) to best (maximal depth). This leads to the deepest regression estimator. 

The deepest regression estimator 𝑀𝑀𝑅𝑅(𝑍𝑍𝑛𝑛) according to [6] is the fit 𝛽𝛽 with maximal regression depth relative to 

the data set, i.e., 

𝑀𝑀𝑅𝑅(𝑍𝑍𝑛𝑛) = 𝑎𝑎𝑎𝑎𝑎𝑎𝑙𝑙𝑎𝑎𝑥𝑥𝛽𝛽 𝑎𝑎 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ (𝛽𝛽,𝑍𝑍𝑛𝑛)                                                                      (7) 

In the univariate case it is easy to see that the deepest regression of a data set is its median. Hence, deepest 

regression generalized the univariate median to linear regression. The maximum value of regression depth is 

achieved when all observation lie on a line. 

• Location depth 

In 1975, [1] introduced the concept of location depth (called halfspace depth and Turkey depth). In the bivariate 

case, the location depth of a point u relative to a bi-dimensional data set 𝑆𝑆𝑛𝑛 is defined as the smallest number of 

data points lying in one of the sides of a line passing through u. This definition can be extended to higher 

dimension. 

Given a set of n points, P, the location depth of a point u is the minimum number of points contained in any 

half-plane passing through u. This notion of depth is not restricted to points in 𝑅𝑅2 −the location depth of a point 

can be defined in any dimension. Note that in R, a number’s location depth can be computed solely by its rank. 

The point in 𝑅𝑅𝑑𝑑 with the highest location depth is called the Tukey median. 

This estimator is called deepest location estimator and is defined as follows: 



American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2016) Volume 26, No  3, pp 335-344 

339 
 

𝑀𝑀𝐷𝐷(𝑍𝑍𝑛𝑛) = 𝑎𝑎𝑎𝑎𝑎𝑎𝑙𝑙𝑎𝑎𝑥𝑥𝛽𝛽𝐻𝐻𝑀𝑀(𝛽𝛽,𝑍𝑍𝑛𝑛)                                                         (8) 

If there is more than one observation with maximal depth, then the deepest location will be the mean of those 

observations. Note that in the univariate case this estimator is equivalent to the median, and in the multivariate 

case the deepest location can be seen as a multivariate median. 

The half-space depth function is given by  

HD (X;Fx)= infH{P(H): H is a close half-space  in 𝑅𝑅𝑝𝑝,𝑋𝑋 ∈ 𝐻𝐻                               (9) 

It turns out that Tx(c ) is the half-space depth of c in one dimension with respect to the population Fx, that is, Tx 

(c) =HD ( c; Fx). Half-space depth is sometimes referred to as Tukey depth . 

0 ≤ 𝑀𝑀𝐹𝐹 ≤ 1where DF in any dept function. 

X1 is more central to (or deeper) in FX than X2 in Fx if DF (X1; Fx) > DF (X2; Fx). This is true for any depth 

function (DF). Let f be the class of distributions on the Borel sets of RP: a statistical depth function is a bounded, 

nonnegative mapping D: PR x .f R→  

• Oja depth 

Another measure of depth was proposed by [7], as follows. Given a set of points P in the plane, the Oja depth of 

a point 𝑢𝑢 ∈ 𝑅𝑅2 is the sum of the area of triangles formed by 𝑢𝑢 and all pairs of points in P, i.e., 

𝑂𝑂𝑀𝑀𝑑𝑑𝑑𝑑𝑑𝑑ℎ (𝑢𝑢) = Ʃij𝑑𝑑𝑎𝑎𝑖𝑖𝑎𝑎𝑛𝑛𝑎𝑎𝑙𝑙𝑑𝑑 𝑎𝑎𝑎𝑎𝑑𝑑𝑎𝑎(𝑢𝑢,𝑑𝑑𝑖𝑖,𝑑𝑑𝑗𝑗)                                           (10) 

The same measure can also be extended to p-dimensions by considering p-simplices formed by 𝑢𝑢 and every 

other configuration of p points of P. 

The point (not necessarily unique) with minimum Oja depth is called the Oja median. It is known that the points 

with minimum Oja median form a convex set. Furthermore, it is known that Oja median occurs as an 

intersection of lines formed by pairs of points of P.  

Take any point 𝑞𝑞 ∈ 𝑅𝑅𝑝𝑝. Let 𝑑𝑑𝑖𝑖 ,𝑑𝑑𝑗𝑗 ∈ 𝑃𝑃 be two points in the input pointset. The Oja depth of q is simply the sum 

of the areas of the triangles formed by q and all pairs of points in P. Given 𝑑𝑑𝑖𝑖 and  𝑑𝑑𝑗𝑗, let 𝑙𝑙𝑖𝑖𝑗𝑗 be the line passing 

through 𝑑𝑑𝑖𝑖 and 𝑑𝑑𝑗𝑗. The area of the triangle formed by 𝑞𝑞,𝑑𝑑𝑖𝑖 ,𝑑𝑑𝑗𝑗 is 1
2
 . d(𝑑𝑑𝑖𝑖𝑑𝑑𝑗𝑗).d(𝑑𝑑𝑗𝑗𝑑𝑑𝑖𝑖). Essentially, the area of the 

triangle can be thought of as the weighted distance of q from 𝑙𝑙𝑖𝑖𝑗𝑗 , 𝑤𝑤𝑖𝑖𝑗𝑗..𝑑𝑑(𝑞𝑞, 𝑙𝑙𝑖𝑖𝑗𝑗)  where 

𝑤𝑤𝑖𝑖𝑗𝑗 = 𝑑𝑑(𝑑𝑑𝑖𝑖 ,𝑑𝑑𝑗𝑗)/2                                               (11) 

 

So the area of triangle formed by points 𝑎𝑎,𝑑𝑑𝑖𝑖 ,𝑑𝑑𝑗𝑗  is then simply 𝑤𝑤𝑖𝑖𝑗𝑗..𝑑𝑑(𝑎𝑎, 𝑙𝑙𝑖𝑖𝑗𝑗). And the Ojo depth of a point q 
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becomes        ∑ ∑ 𝑤𝑤𝑖𝑖𝑗𝑗..𝑑𝑑(𝑞𝑞, 𝑙𝑙𝑖𝑖𝑗𝑗)𝑗𝑗≠𝑖𝑖𝑖𝑖     

Given a point 𝑑𝑑𝑖𝑖 = �𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗�, look at the cone  

𝑧𝑧 = 𝑤𝑤𝑖𝑖𝑗𝑗 .�(𝑥𝑥 − 𝑥𝑥𝑖𝑖)2(𝑦𝑦 − 𝑦𝑦𝑖𝑖)2                                                                 (12) 

where 𝑤𝑤𝑖𝑖𝑗𝑗. is some constant. It is easy to verify that the height of the cone at point q is 𝑤𝑤𝑖𝑖𝑗𝑗..𝑑𝑑(𝑞𝑞,𝑑𝑑𝑖𝑖). Therefore 

take the line, 𝑙𝑙𝑖𝑖𝑗𝑗, through the two points 𝑑𝑑𝑖𝑖 and 𝑑𝑑𝑗𝑗, and let 𝑤𝑤𝑖𝑖𝑗𝑗. be as defined above. Then if we place the cone 

defined above at every point on the line, we essentially get a wedge defined by the line. It follows that the height 

of this wedge at point q is 𝑤𝑤𝑖𝑖𝑗𝑗..𝑑𝑑(𝑞𝑞, 𝑙𝑙𝑖𝑖𝑗𝑗) which is exactly the area of the triangle 𝑞𝑞,𝑑𝑑𝑖𝑖 ,𝑑𝑑𝑗𝑗.      

• Simplical depth 

Oja depth for a point measured the sum of the areas of �𝑛𝑛2� triangle in the plane. We can also define a  

measure which simply counts the number of triangles containing the required point. This leads to simplicial 

depth of a points set, defined by [8]. Let T be the set of all triangles formed by vertices of P- each triangle 

requires three vertices, and therefore T has  �𝑛𝑛3� triangles. Given a point 𝑢𝑢 ∈ 𝑅𝑅𝑝𝑝, the simplicial depth of 𝑢𝑢, 

denoted S Depth(𝑢𝑢) is the number of triangles of T that contains 𝑢𝑢.  

The simplical median is the point with the highest simplical depth. [8] showed that the simplical median is 

invariant to affine transformations.   

• Convex Hull Peeling Depth [9] 

Convex hull peeling depth of a point 𝑥𝑥 ∈  𝑆𝑆𝑛𝑛 ⊂ 𝑅𝑅𝑝𝑝 relative to a p-dimensional data set 𝑆𝑆𝑛𝑛  is simply the level of 

the convex layer to which x belongs to .  

A convex layer is defined as follows: Construct the smallest convex hull and enclose all data points. The points 

on the perimeter are designated the first convex layer which is removed. The convex hull of the remaining 

points is constructed; these points on the perimeter are the second convex layer. The process is repeated, and a 

sequence of the nested convex layers is formed. The higher a point belongs to, the deeper the point is within the 

data cloud. The disadvantages of convex hull peeling depth are: it is not a robust measure and it’s impossible to 

associate it a theoretical distribution. 

2.2. Projection Pursuit Tables  

Projection pursuit is a thorough process of searching all the projection directions to find the most “interesting” 

projection. This procedure derives its name from the fact that it interprets high dimensional data through well-

chosen lower-dimensional projections. The “pursuit” part of the name refers to optimization with respect to the 

projection direction. The method is computationally intensive and gets complicated further as the dimension 
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increases, but this technique is gaining popularity with increased attention given to savvy computer 

programming techniques and improvement in computer technology. 

 “Projection pursuit is the most powerful technique that can lift a one-dimensional technique to higher 

dimension.” [10]. This implies that a projection pursuit technique can be used to reduce dimension to one and 

then any one-dimensional statistical technique can be applied. Every traditional projection pursuit methodology 

mainly differs in the choice of projection index. There are certain demands of a good projection index [11]: 

Robust to deviations, Approximately affine invariant, Consistent, Simple enough to permit quick computation 

even for large data sets, and Others. 

In addition to lowering the dimension, projection pursuit also allows us to overcome problems associated with 

sparsity of data in high dimensions [12] which is also termed “curse of dimensionality” [13]. With increasing 

dimension, the need for more and more data to meet the requirement of sufficient data increases like a curse. 

Many techniques fail to perform well under the conditions of sparse data. There are also situations where the 

number of variables (P) is much higher than the amount of data or number of observations (n). References 

[14,12] gave strong heuristic arguments indicating that a projection is less interesting the more it is normal. 

Any method that effectively helps to reduce the dimension from high to low can be treated as a form of 

projection pursuit. There exist different forms of projection pursuit: principal component analysis, linear 

discriminant analysis, and projection pursuit regression etc. In this paper we shall only concentrate on projection 

pursuit by linear discriminant function. 

• Linear discriminant analysis 

Discriminant analysis determines some optimal combination of variables called the discriminant function so that 

the first function provides the most overall discrimination between groups; the second provides the second most 

overall discrimination, and so on. The functions will be orthogonal, that is their combinations to the 

discrimination between groups will not overlap. The first function picks up the most variation; the second 

function picks up the greatest part of the unexplained variation, etc. The maximum number of discriminant 

functions will be equal to the degree of freedom or the number of variables in the analysis, which is smaller. The 

discriminant function is what is used in classifying objects in the groups in which they had the highest 

classification score. 

In this paper the first discriminant function will be used to reduce the p-dimensional data to one dimensional 

data. This reduced form of the data will then be fixed into the point group transvariation which is then used in 

classify new subjects with unknown group into one of the existing groups. 

2.3. Allocation Based on Distance  

Given two independent trainng samples X1,…, Xm and Y1,…,Yn from populations  xΠ and yΠ  , respectively, 

defined on RP (P≥1), a new observation Z=z is classified in  xΠ   if  
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                            opt opt opt optx yu z m u u z m u
Λ Λ Λ Λ   − < −   

   
 

Otherwise classify it in yΠ .  Here optxm u
Λ 

 
 

and optym u
Λ 

 
 

 are centres of the two projected groups. One 

may take either the mean or the median as a measure of centres. We will consider mean in this study.  Hereafter 

the classifier obtained using this allocation method will be referred to as a Transvariation – Distance (TD) 

classifier.  In this article this classifier was used in classification after the data have been transformed [15]. 

2.4. Data presentation  

To compare the discriminant procedures discussed in section one, two different data sets are studied in this 

article: simulated and real life data sets.  

• Simulation Data 

The discriminant procedures by data depth and projection pursuit (by linear discriminant function) are evaluated 

using six simulated data sets. The procedures are then evaluated on data sets generated from a variety of 

specifications with different dimensions P = 2,3,4,5,6, and 7; the same number of groups 𝑎𝑎 = 2; and different 

size of samples 𝑛𝑛. In all the cases the class distributions are binomial, but the generated data sets differ in size 

and probability of success of the groups. The various specifications of the data sets are presented below:  

Table 1: Data specifications and their optimal probability of misclassification (pmc) 

S/N Sample  

Size 

No. of 

variables 

No. of trials   

Group X    Group Y 

Probability of success 

 Group X      Group Y 

P(MC) 

1 120 5 25 40 0.5, …,0.5 0.7,…,0.7 0.3300 

2 100 4 50 80 0.6,…,0.6 0.3,…,0.3 0.5883 

3 80 2 40 50 0.5,…,0.5 0.5,…,0.5 0.5000 

4 50 7 30 60 0.8,…,0.8 0.6,…,0.6 0.698 

5 40  3 20 30 0.4,…,0.4 0.6,…,0.6 0.352 

6  10 6 25 30 0.3,…,0.3 0.6,…,0.6 0.365 

 

• Real data 

The real life data we used are obtained from Ph.D seminar paper presented at the Department of Statistics, 

Nnamdi Azikiwe University, Awka, Nigeria by [16], sourced from Nigeria Institute for Oil Palm Research with 

emphasis on the characteristics and yield of two different progenies of palm tree. The characteristics considered 
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for classification are leaf count in the nursery, height in nursery, leaf count in field, height in field, canopy 

spread in meters, sex ratio (%), and yield in 4 years. The number of sample size studied is forty.   

3. Illustration and Result of the Study 

In projection pursuit approach we started by finding the linear discriminant function of each original data set. 

The resulted first discriminant function was used to sweep the p-dimensional data space 𝑅𝑅𝑝𝑝 to one dimension R. 

With reduced data space, Transvariation distance classifier that is univariate statistical tool was then used to 

cross validate the training samples.  

For data depth method because our simulated data do not have different scale of measurement and of its 

computational ease, spatial or L1 depth is used in this work to find the depth of each data point. With the data 

depth of entire data calculated objects were correctly classify into the population they belong to. For the real life 

data, ∑ (𝑥𝑥 − 𝑋𝑋)
−12
𝑥𝑥   were used in place of 𝑥𝑥 − 𝑋𝑋 in (8) to make L1 depth classifier affine invariant. 

From the results of the analyses we obtained the probability of miss classified data in Table 2 below.   

Table 2: Estimated probability of misclassification according to sample size 

Sample size (validated data) 60 50 40 25 20 5 Life Data 

PMC for data depth 0.0000 0.0123 0.0167 0.025 0.0500 0.0000 0.2500 

PMC for PP 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

 

4.  Summary and Conclusion 

The performances of the procedures were evaluated by the misclassification probabilities obtained using 

apparent error rate of the validated data sets. Based on our observations during iteration and our findings after 

the analysis (see Table 2), we conclude that projection pursuit (by linear discriminant function) has highest 

predictive power over the method of data depth we considered. 
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