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Abstract 

Volatility in financial markets has attracted growing attention by academics, policy makers and practitioners 

during the past two decades. First, volatility receives a great deal of concern from policy makers and financial 

market participants because it can be used as a measurement of risk. Second, High volatility of return in 

financial market may discourage investors to invest in stock market and hence greater uncertainty. So we need 

to estimate the appropriate volatility model to capture the volatility. In this paper, we study the performance of 

simple GARCH model. We apply the Generalized Autoregressive Conditional Heteroscedasticity (GARCH) 

model of different lag order to model volatility of stock returns of four Bangladeshi Companies on Dhaka Stock 

Exchange (DSE). Akaike Information Criteria (AIC) and Bayesian Information Criteria (BIC) are used to select 

the best GARCH(p,q) model. From the empirical results, it is found that the distribution of daily returns are non-

normal with negative skewness and pronounced excess kurtosis. Result shows that, GARCH(1,1) is  the best 

than other GARCH(p,q) models in modeling volatility for the daily return series of DSE. 

Keywords: Volatility; stock return; DSE; GARCH(1,1). 

1. Introduction  

Volatility is the most important variable in the pricing of derivative securities, whose trading volume has 

quadrupled in recent years.  
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It is not the same as risk. According to [27], volatility is defined as a statistical measure of the dispersion of 

returns for a given security or market index and it can either be measured using the standard deviation or 

variance between returns from that same security or market index.  

The daily volatility is the measure of fluctuations within a day and is calculated as the square of the daily return 

series. The variable return is denoted by R and is calculated as: )/log( 1−= ttt xxR ; where, tx  is the daily 

closing  price index. And thus the daily volatility is just the square of the daily return as: 2
tt R=σ  Volatility 

forecasts are fundamental in several financial applications. For instance, volatility inputs are widely used for 

portfolio optimization, hedging, risk management, and pricing of options and other type of derivatives [25]. 

Given that financial volatility is a measure of risk, policy makers often rely on market volatility to have an idea 

of the vulnerability of financial markets and the economy [20]. Furthermore, many decisions are taken 

anticipating what could occur in the future, thus, a forecast of the volatility of financial variables is a relevant 

piece of information. So we need to estimate the appropriate volatility models that capture volatility well. In this 

paper, we focus upon one aspect of GARCH models, namely, choosing the best GARCH model among all other 

lag order of GARCH models. There are many very good surveys covering the mathematical and statistical 

properties of GARCH models. See, for example, [3], [4], [18], [19], [8] and [26]. There are also several 

comprehensive surveys that focus on the forecasting performance of GARCH models including [20], [21], and 

[1]. However, there are relatively few surveys that focus on the practical econometric issues associated with 

estimating GARCH models and forecasting volatility. This paper, which draws heavily from [28], gives a tour 

through the empirical analysis of univariate GARCH models for financial time series.  

There is observed considerable uncertainty and volatility both in the emerging and mature stock markets. Great 

concern is about the fluctuating returns of their investments due to the market risk and variation in the market 

price speculation as well as the unstable business performance, [6]. In the real world of financial markets, 

investors and financial analysts are generally more interested in the profit or loss of the stock over a period of 

time that is; the increase or decrease in the price, than in the price self. 

Modelling volatility in financial markets is important because it sheds further light on the data generating 

process of the returns, [17] and the riskiness associated with the asset since volatility is related to risk, [24]. Due 

to the usefulness of volatility, various models have been developed since Engel’s paper of 1982. 

Engle (1982), [22] studied on ARCH and Bollerslev (1986), [23] on GARCH models, and revealed that, these 

models were designed to deal with the assumption of non-stationarity found in real life financial data. He further 

pointed out that these models have become widespread tools for dealing with time series heteroscedasticity. The 

ARCH and GARCH models treat heteroscedasticity as a variance to be modelled. The goal of such models is to 

provide a volatility measure like a standard deviation that can be used in financial decisions concerning risk 

analysis, portfolio selection and derivative pricing. 

The assumption that variance is constant through time is statistically inefficient and inconsistent, [13]. In real 

life, financial data for instance stock market returns data, variance changes with time (a phenomenon termed as 
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heteroscedasticity), hence there is need for studying models which accommodate this possible variation in 

variance. Many studies have suggested that volatility of returns in stock markets world over can be modelled 

and forecasted using the GARCH type models. 

Financial time series usually exhibit stylized characteristics. Firstly, it was observed by [23], that financial 

returns displayed volatility clustering meaning that large changes in the price of an asset are often followed by 

other large changes, and small changes are often followed by other small changes. Secondly, [9] demonstrated 

that financial data exhibit leptokurtosis meaning that the distribution of the returns is fat-tailed. Finally, [11] 

introduced the leverage effect meaning that volatility is higher after negative shocks than after positive shocks 

of the same magnitude. A good volatility model, then, must be able to capture and reflect these stylized facts, 

[22]. The daily returns exhibit the “stylized facts” of volatility clustering as well as non-normal empirical 

distribution. Researchers gave documented these and many other stylized facts about the volatility of economic 

and financial time series. Reference [4] gave a complete account of these facts. The GRCH model is capable of 

explaining many of those stylized facts. The four most important ones are: volatility clustering, fat tails, 

volatility mean reversion, and asymmetry.  

2. Data and Methodology 

2.1 Data 

We employ daily observations of stock market indices of four Bangladeshi companies namely Bangladesh 

Export Import Company Limited (BEICL), Beximco Pharmaceuticals Limited (BPL), Prime Bank Limited 

(PBL) and Arab Bangladesh Bank Limited (ABBL) for the Period January 2000 to November 2014. The data 

were provided by the Dhaka Stock Exchange (DSE) library. 

2.2 GARCH(p,q) Model 

The Autoregressive Conditional Heterscedasticity (ARCH) model by Engle (1982) [22] and its generalization, 

GARCH by Bollerslev (1986) [23] are the major and widely used methodologies in modeling and forecasting 

volatility of financial time series. The standard GARCH (p, q) model expresses the variance at time, t as:  

∑∑ = −= − ++=
p

j jtj
q

i itit 1
2

1
22 σβεαωσ

 

2
tσ is the conditional variance, tε  the residual returns, defined as; ttt zσε =  and tz ~𝑁𝑁(0,1) i.e are 

standardized residual returns. 𝜔𝜔, iα and jβ are the parameters to be estimated. In order for the variance to be 

positive the necessary condition is that 0>ω , 0≥iα  (for qi ,...,1= ) and 0≥iβ  (for pj ,...,1= ). For 

0=p , equation (1) reduces to an ARCH(q) model and for qp == 0 , equation(1) reduces to simply white 

noise. In this model, the conditional variance only depends on the magnitude, and not the sign, of the underlying 

asset. Large ARCH coefficients, iα  imply that volatility reacts significantly to market movements while large 
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GARCH coefficients, jβ  indicate that shocks are persistent, [12].   

It can be shown that any GARCH(p,q) process can be written in an ARMA(p,q) representation [15]. As an 

alternative to conditional normal distribution. Bollerslev (1987)[6], and Kaiser (1996)[14] use student-t 

distribution while Nelson (1991)[16], Kaiser (1996)[14] suggests Generalized Student-t distribution. In this 

study, the assumption of conditional normality is used estimation. 

2.3 Model Selection 

In financial modelling, one of the main challenges is to select a suitable model from a candidate family to 

characterize the underlying data. The choice of a good model in the application of time series analysis is crucial; 

the total process cannot be automated since the context is all important and there is never a perfect or unique 

model. Model selection criteria provide useful tools in this regard and assesses whether a fitted model offers an 

optimal balance between goodness-of-fit and parsimony. Ideally, a criteria will identify candidate models that 

are either too simplistic to accommodate the data or unnecessarily complex. The most common model selection 

criteria are the Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC).  

AIC= T ln(residual sum of squares) + 2n, 

BIC= T ln(residual sum of squares) + nln(T) 

Where, T is the number of usable observation, and n is the number of parameter to be estimated. In practice, the 

model with smallest AIC or BIC is selected as the best model  

According to [10], A desirable model is one that minimizes the AIC and the BIC.                     

3. Result and Discussion 

3.1 Basic Statistics of daily return series 

Table 1: Descriptive statistics of daily return series 

Statistic BEICL BPL PBL ABBL 

Mean 5.60785E-05 0.000171 -0.00064 -0.00028 

Median -0.00284 -0.00191 -0.00034 -0.001 

Maximum 2.77259 0.72022 0.35017 0.27173 

Minimum -2.515 -0.73868 -2.37547 -2.31656 

Standard Deviation 0.145447254 0.037098 0.052 0.051855 

Kurtosis 185.0965682 99.76489 1184.42 1101.642 

Skewness 3.681612972 -0.59467 -26.0862 -25.6926 

From the above table we observe that for every company skewness are negative and kurtosis value is greater 
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than 3. Hence we can say that the return series has leptokurtic distribution. 

Table 2: Shapiro-Wilk Normality test of daily reurn series of selected companies 

Company Name Statistics Significant 

BEICL W=0.2498 p-value < 
16102.2 −×  

BPL W=0.67 p-value < 
16102.2 −×  

PBL W=0.3446 p-value < 
16102.2 −×  

ABBL W=0.3825 p-value < 
16102.2 −×  

From the above Shapiro-Wilk normality test we observe that for each company p value is approximately zero 

i.e. it’s value is less than 0.05 that leads null hypothesis is rejected. So we can say that the return series is non-

normal which support descriptive statistic returns. 

 

Figure 1: Distribution of Closing Prices of the selected companies from January, 200 to November, 2014. 

From the above plot, we observe that over the period of study the prices seem to be trending, suggesting perhaps 

that the mean and variance gas been changing. So we say that the daily closing price of Bangladesh Export 

Import Company Limited(a), Beximco Pharmaceuticals Limited (b), Prime Bank Limited (c) and Arab 

Bangladesh Bank Limited (d) is not stationary. 
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Figure 2: Distribution of Daily Return Series Data of selected companies from January, 200 to November, 

2014. 

From the above figure we observe that the return series appears to be stable with an average return of 

approximately zero: however the volatility or variability of the data changes over time. In fact, the data shows 

volatility clustering, that is highly volatile periods tend to be clustered together means there is no visual 

evidence of serial correlation in the return but there is evidence of serial correlation in the amplitude of the 

returns. 

3.2 Empirical Results 

We consider six GARCH(p,q) models; GARCH(1,1), GARCH(1,2), GARCH(1,3), GARCH(2,1), GARCH(2,2) 

and GARCH(2,3) estimate the parameters and compare their performance. The results are showed in the table 

below: 

From the above table we can see that among all the GARCH models GARCH(1,1) model gives the  smallest 

values of AIC and BIC for all of the four companies. Hence we may conclude that GARCH(1,1) is the best 

model to capture stock returns volatility. 
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Table 3: Estimation result of GARCH(p,q) models 

 

3.3 Estimation results of GARCH(1,1) Model for selected companies 

Table 4: Estimation result of GARCH(1,1) model for BEICL 

Parameter Estimate Standard Error P-value 

    
µ  -0.008770 0.053557 0.869923 

)1(AR  -0.737088 0.172442 0.000019 

)2(AR  0.127805 0.055662 0.021670 

)1(MA  0.840257 0.164716 0.000000 

ω  0.037266 0.022867 0.103175 

1α  0.108179 0.050049 0.030658 

1β  0.872005 0.053553 0.000000 

The estimated GARCH(1,1) model is  

2
1

2
1

2 872005.0108179.0037266.0 −− ++=

=

ttt

ttt

y
y

σσ

εσ

 

Company 

Name 

(p,q) AIC BIC Company 

Name 

(p,q) AIC BIC 

 

 

BEICL 

(1,1) 2.880520 2.779989  

 

PBL 

(1,1) 2.776297 2.899568 

(1,2) 2.884531 2.964062 (1,2) 2.781991 2.916489 

(1,3) 2.880525 2.969998 (1,3) 2.776465 2.923190 

(2,1) 2.926913 3.006445 (2,1) 2.783876 3.006445 

(2,2) 2.883689 2.793162 (2,2) 2.788570 2.935295 

(2,3) 2.892359 2.991774 (2,3) 2.781538 2.940490 

 

BPL 

(1,1) 3.325846 3.375004  

 

ABBL 

(1,1) 2.971700 3.040600 

(1,2) 3.331304 3.390294 (1,2) 2.976600 3.055400 

(1,3) 3.331304 3.390294 (1,3) 2.981400 3.070100 

(2,1) 3.336856 3.405677 (2,1) 2.976600 3.055400 

(2,2) 3.327572 3.386561 (2,2) 2.981500 3.070100 

(2,3) 3.332474 3.401295 (2,3) 2.986400 3.084900 
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Table 5: Estimation result of GARCH(1,1) model for BPL 

Parameter Estimate Standard Error P-value 

    
µ  -0.098950 0.064661 0.125943 

)1(AR  0.081125 0.058056 0.162306 

ω  0.229814 0.178479 0.197877 

1α  0.128896 0.079344 0.104263 

1β  0.743204 0.167655 0.000009 

    

The estimated GARCH(1,1) model is  

2
1

2
1

2 743204.0128896.0229814.0 −− ++=

=

ttt

ttt

y
y

σσ

εσ

 

Table 6: Estimation result of GARCH(1,1) model for PBL
 

Parameter Estimate Standard Error P-value 

µ  -0.006297 0.054151 0.907429 

)1(AR  -0.298520 0.036563 0.000000 

)2(AR  -0.228377 0.037511 0.000000 

)3(AR  -0.867137 0.046045 0.000000 

)1(MA  0.350125 0.029572 0.000000 

)2(MA  0.355290 0.019806 0.000000 

)3(MA  0.956256 0.024805 0.000000 

ω  0.064968 0.034740 0.061466 

1α  0.206160 0.071804 0.004090 

1β  0.742640 0.065376 0.000000 

 

The estimated GARCH(1,1) model is  

2
3

2
1

2
1

2 262910.0357867.0332405.0077882.0 −−− +++=

=

tttt

ttt

y
y

σσσ

εσ
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Table 7: Estimation result of GARCH(1,1) model for ABBL 

Parameter Estimate Standard Error P-value 

    
µ  0.005663 0.053638 0.915925 

)1(AR  -0.424958 0.317697 0.181020 

)2(AR  -0.056589 0.070146 0.419820 

)1(MA  0.526438 0.316239 0.095976 

ω  0.000795 0.002470 0.747601 

1α  0.000000 0.002461 1.000000 

1β  0.999000 0.000055 0.000000 

    

The estimated GARCH(1,1) model is  

2
1

2 999000.0000795.0 −+=

=

tt

ttty
σσ

εσ

 

4. Conclusion  

The volatility of Dhaka Stock Exchange (DSE) returns of four selected companies BEICL, BPL, PBL and 

ABBL has been modelled for a period of 01/01/2000 to 30/11/2014 using different GARCH(p,q) models; 

GARCH(1,1), GARCH(1,2), GARCH(1,3), GARCH(2,1), GARCH(2,2) and GARCH(2,3). From the empirical 

results obtained, we can conclude the following: Firstly, it was found that the return series of DSE are not 

normally distributed. Secondly, the DSE return series also exhibit volatility clustering and leptokurtosis as seen 

from the high excess kurtosis values. Over all, GARCH(1,1) performed best in modeling volatility of DSE stock 

returns. 
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