On a Generalized $\boldsymbol{\beta R}$ - Birecurrent Finsler Space

Fahmi Yaseen Abdo Qasem ${ }^{\mathrm{a}^{*}}$, Wafa'a Hadi Ali Hadi ${ }^{\text {b }}$
${ }^{a}$ Department of Mathematics, Faculty of Education-Aden, University of Aden, Khormaksar , Aden, Yemen
${ }^{b}$ Department of Mathematics , Community College, Dar Saad , Aden, Yemen
${ }^{a}$ Email: Fahmiyassen1@gmail.com
${ }^{b}$ Email: wf_hadi@yahoo.com

Abstract

In the present paper, we introduced a Finsler space whose Cartan's third curvature tensor $R_{j k h}^{i}$ satisfies $\mathcal{B}_{m} \mathcal{B}_{n} R_{j k h}^{i}=a_{m n} R_{j k h}^{i}+b_{m n}\left(\delta_{k}^{i} g_{j h}-\delta_{h}^{i} g_{j k}\right)-2 y^{r} \mu_{n} \mathcal{B}_{r}\left(\delta_{k}^{i} C_{j h m}-\delta_{h}^{i} C_{j k m}\right)$. where $a_{m n}$ and $b_{m n}$ are nonzero covariant tensor fields of second order called recurrence tensor fields, such space is called as a generalized βR-birecurrent Finsler space.

The curvature tensor $H_{j k h}^{i}$, the torsion tensor $H_{k h}^{i}$, the deviation tensor H_{h}^{i}, the Ricci tensors ($H_{j k}, R_{j k}$), the vector H_{k} and the scalar curvature tensor H of such space are non-vanishing. Under certain conditions, a generalized βR-birecurrent Finsler space becomes Landsberg space. Some conditions have been pointed out which reduce a generalized βR-birecurrent Finsler space $F_{n}(n>2)$ into Finsler space of scalar curvature.

Keywords: Finsler space; Generalized βR-birecurrent Finsler space; Ricci tensor; Landsberg space; Finsler space of scalar curvature.

1. Introduction

H.S. Ruse[4] considered a three dimensional Riemannian space having the recurrent of curvature tensor and he called such space as Riemannian space of recurrent curvature. This idea was extended to n-dimensional Riemannian and non- Riemannian space by A.G. Walker [1],Y.C. Worg [14] ,Y.C. Worg and K. Yano [15] and others.

[^0]S. Dikshit [13] introduced a Finsler space whose Berwald curvature tensor $H_{j k h}^{i}$ satisfies recurrence property in the sense of Berwald, F.Y.A.Qasem and A.A.M.Saleem [3] discussed general Finsler space for the $h v$-curvature tensor $U_{j k h}^{i}$ satisfies the birecurrence property with respect to Berwald's coefficient $G_{j k}^{i}$ and they called it UBR- Finsler space. P.N.pandey, S.Saxena and A.Goswami [8] introduced a Finsler space whose Berwald curvature tensor $H_{j k h}^{i}$ satisfies generalized recurrence property in the sense of Berwald they called such space generalized H-recurrent Finsler space .
a) $y_{i} y^{i}=F^{2}$
b) $\mathrm{g}_{i j}=\dot{\partial}_{i} y_{j}=\dot{\partial}_{j} y_{i}$
c) $\mathcal{B}_{k} y^{i}=0$
d) $C_{i j k} y^{i}=C_{k i j} y^{i}=C_{j k i} y^{i}=0$
e) $\mathcal{B}_{k} g_{i j}=-2 C_{i j k h} y^{h}=-2 y^{h} \mathcal{B}_{h} C_{i j k}$
f) $G_{j k h}^{i} y^{j}=G_{h j k}^{i} y^{j}=G_{k h j}^{i} y^{j}=0$.

The unit vector l^{i} and the associate vector l_{i} is defined by
a) $\mathrm{l}^{i}=\frac{y^{i}}{F}$
b) $l_{i}=\mathrm{g}_{i j} l^{j}=\dot{\partial}_{i} F=\frac{y_{i}}{F}$.

The processes of Berwald's covariant differentiation and the partial differentiation commute according to
(1.3) $\quad\left(\dot{\partial}_{k} \mathcal{B}_{h}-\mathcal{B}_{k} \dot{\partial}_{h}\right) T_{j}^{i}=T_{j}^{r} G_{k h r}^{i}-T_{r}^{i} G_{k h j}^{r}$.

The tensor $H_{j k h}^{i}$ satisfies the relation

$$
\begin{align*}
& H_{j k h}^{i} y^{j}=H_{k h}^{i} . \tag{1.4}\\
& H_{j k h}^{i}=\dot{\partial}_{j} H_{k h}^{i} .
\end{align*}
$$

The torsion tensor $H_{k h}^{i}$ satisfies
(1.6) $\quad H_{k h}^{i} y^{k}=H_{h}^{i}$,
(1.7) $\quad R_{j k h}^{i} y^{j}=H_{k h}^{i}$,
(1.8) $\quad H_{j k}=H_{j k i}^{i}$,
(1.9) $\quad H_{k}=H_{k i}^{i}$,
and

$$
\begin{equation*}
H=\frac{1}{n-1} H_{i}^{i} . \tag{1.10}
\end{equation*}
$$

where $H_{j k}$ and H are called h-Ricci tensor [7] and curvature scalar respectively. Since contraction of the
indices does not affect the homogeneity in y^{i}, hence the tensors $H_{r k}, H_{r}$ and the scalar H are also homogeneous of degree zero, one and two in y^{i} respectively. The above tensors are also connected by
(1.11) $\quad H_{j k} y^{j}=H_{k}$,
(1.12) $\quad H_{j k}=\dot{\partial}_{j} H_{k}$,

$$
\begin{gather*}
H_{k} y^{k}=(n-1) H . \tag{1.13}\\
H_{k h}^{i}=\dot{\partial}_{k} H_{h}^{i} . \tag{1.14}
\end{gather*}
$$

The necessary and sufficient condition for a Finsler space $F_{n}(n>2)$ to be a Finsler space of scalar curvature is given by

$$
\begin{equation*}
H_{h}^{i}=F^{2} R\left(\delta_{h}^{i}-l^{i} l_{h}\right) . \tag{1.15}
\end{equation*}
$$

A Finsler space F_{n} is said to be Landsberg space if satisfies

$$
\begin{equation*}
y_{r} G_{i j k}^{r}=0 . \tag{1.16}
\end{equation*}
$$

The Ricci tensor $R_{j k}$ is given by

$$
\begin{equation*}
R_{j k i}^{i}=R_{j k} . \tag{1.17}
\end{equation*}
$$

2. Generalized $\boldsymbol{\beta} \boldsymbol{R}$-Birecurrent Finsler Space

A Finsler space whose Cartan's third curvature tensor $R_{j k h}^{i}$ satisfies

$$
\begin{equation*}
\mathcal{B}_{n} R_{j k h}^{i}=\lambda_{n} R_{j k h}^{i}+\mu_{n}\left(\delta_{k}^{i} g_{j h}-\delta_{h}^{i} g_{j k}\right), R_{j k h}^{i} \neq 0, \text { where } \lambda_{n} \text { and } \mu_{n} \text { are non-zero covariant vector } \tag{2.1}
\end{equation*}
$$ fields and called the recurrence vector fields, we shall call such Finsler space as a generalized R - recurrent Finsler space.

Differentiating (2.1) covariantly with respect to x^{m} in the sense of Berwald and using (1.1e), we get

$$
\begin{align*}
\mathcal{B}_{m} \mathcal{B}_{n} R_{j k h}^{i}= & \left(\mathcal{B}_{m} \lambda_{n}+\lambda_{n} \lambda_{m}\right) R_{j k h}^{i}+\left(\lambda_{n} \mu_{m}+\mathcal{B}_{m} \mu_{n}\right)\left(\delta_{k}^{i} g_{j h}-\delta_{h}^{i} g_{j k}\right) \tag{2.2}\\
& -2 y^{r} \mu_{n} \mathcal{B}_{r}\left(\delta_{k}^{i} C_{j h m}-\delta_{h}^{i} C_{j k m}\right) .
\end{align*}
$$

Which can be written as

$$
\begin{equation*}
\mathcal{B}_{m} \mathcal{B}_{n} R_{j k h}^{i}=a_{m n} R_{j k h}^{i}+b_{m n}\left(\delta_{k}^{i} g_{j h}-\delta_{h}^{i} g_{j k}\right)-2 y^{r} \mu_{n} \mathcal{B}_{r}\left(\delta_{k}^{i} C_{j h m}-\delta_{h}^{i} C_{j k m}\right) \tag{2.3}
\end{equation*}
$$

where $a_{m n}=\mathcal{B}_{m} \lambda_{n}+\lambda_{n} \lambda_{m}$ and $b_{m n}=\lambda_{n} \mu_{m}+\mathcal{B}_{m} \mu_{n}$ are non-zero covariant tensor fields of second order .

Definition 2.1. A Finsler space F_{n} whose Cartan's third curvature tensor $R_{j k h}^{i}$ satisfies the condition (2.3) will be called generalized βR-birecurrent Finsler space, we shall denote it $G \beta R-B R-F_{n}$.

Transvecting (2.3) by y^{j}, using (1.1c), (1.7) and (1.1d), we get

$$
\begin{equation*}
\mathcal{B}_{m} \mathcal{B}_{n} H_{k h}^{i}=a_{m n} H_{k h}^{i}+b_{m n}\left(\delta_{k}^{i} y_{h}-\delta_{h}^{i} y_{k}\right) \tag{2.4}
\end{equation*}
$$

Further transvecting (2.4) by y^{k}, using (1.1c), (1.6) and (1.1a), we get

$$
\begin{equation*}
\mathcal{B}_{m} \mathcal{B}_{n} H_{h}^{i}=a_{m n} H_{h}^{i}+b_{m n}\left(y^{i} y_{h}-\delta_{h}^{i} F^{2}\right) \tag{2.5}
\end{equation*}
$$

Thus, we have

Theorem 2.1. In $G \beta R-B R-F_{n}$, Berwald second covariant derivative of the $h(v)$-torsion tensor $H_{k h}^{i}$ and the deviation tensor H_{h}^{i} is given by the equations (2.4) and (2.5) ,respectively.

Contracting the indices i and h in (2.3), (2.4) and (2.5) , respectively and using (1.17),(1.9) and (1.10) , we get

$$
\begin{align*}
& \mathcal{B}_{m} \mathcal{B}_{n} R_{j k}=a_{m n} R_{j k}+(1-n) b_{m n} g_{j k}-2(1-n) y^{r} \mu_{n} \mathcal{B}_{r} C_{j k m} . \tag{2.6}\\
& \mathcal{B}_{m} \mathcal{B}_{n} H_{k}=a_{m n} H_{k}+(1-n) b_{m n} y_{k} . \tag{2.7}
\end{align*}
$$

and

$$
\begin{equation*}
\mathcal{B}_{m} \mathcal{B}_{n} H=a_{m n} H-b_{m n} F^{2} . \tag{2.8}
\end{equation*}
$$

Thus, we have

Theorem 2.2. In $G \beta R-B R-F_{n}$, the $R-$ Ricci tensor $R_{j k}$, the curvature vector H_{k} and the scalar curvature H are non-vanishing .

Differentiating (2.7) partially with respect to y^{j} and using (1.1b), we get

$$
\begin{equation*}
\dot{\partial}_{j}\left(\mathcal{B}_{m} \mathcal{B}_{n} H_{k}\right)=\left(\dot{\partial}_{j} a_{m n}\right) H_{k}+a_{m n}\left(\dot{\partial}_{j} H_{k}\right)+(1-n)\left(\dot{\partial}_{j} b_{m n}\right) y_{k}+(1-n) b_{m n} g_{j k} \tag{2.9}
\end{equation*}
$$

Using commutation formula exhibited by (1.3) for $\left(\mathcal{B}_{n} H_{k}\right)$ in (2.9) and using (1.12), we get

$$
\begin{align*}
& \mathcal{B}_{m} \dot{\partial}_{j}\left(\mathcal{B}_{n} H_{k}\right)-\left(\mathcal{B}_{r} H_{k}\right) G_{j m n}^{r}-\left(\mathcal{B}_{n} H_{r}\right) G_{j m k}^{r}=\left(\dot{\partial}_{j} a_{m n}\right) H_{k} \tag{2.10}\\
& +a_{m n} H_{j k}+(1-n)\left(\dot{\partial}_{j} b_{m n}\right) y_{k}+(1-n) b_{m n} g_{j k} .
\end{align*}
$$

Again applying the commutation formula exhibited by (1.3) for $\left(H_{k}\right)$, we get

$$
\begin{align*}
& \mathcal{B}_{m} \mathcal{B}_{n} H_{j k}-\mathcal{B}_{m}\left(H_{r} G_{k n j}^{r}\right)-\left(\mathcal{B}_{r} H_{k}\right) G_{j m n}^{r}-\left(\mathcal{B}_{n} H_{r}\right) G_{j m k}^{r} \tag{2.11}\\
& \quad=\left(\dot{\partial}_{j} a_{m n}\right) H_{k}+a_{m n} H_{j k}+(1-n)\left(\dot{\partial}_{j} b_{m n}\right) y_{k}+(1-n) b_{m n} g_{j k}
\end{align*}
$$

This shows that

$$
\begin{equation*}
\mathcal{B}_{m} \mathcal{B}_{n} H_{j k}=a_{m n} H_{j k}+(1-n) b_{m n} g_{j k} . \tag{2.12}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
-\mathcal{B}_{m}\left(H_{r} G_{k n j}^{r}\right)-\left(\mathcal{B}_{r} H_{k}\right) G_{j m n}^{r}-\left(\mathcal{B}_{n} H_{r}\right) G_{j m k}^{r}=\left(\dot{\partial}_{j} a_{m n}\right) H_{k}+(1-n)\left(\dot{\partial}_{j} b_{m n}\right) y_{k} \tag{2.13}
\end{equation*}
$$

Thus, we have

Theorem 2.3. In $G \beta R-B R-F_{n}$, the H-Ricci tensor $H_{j k}$ is given by equation (2.12) if and only if (2.13) holds good.

Transvecting (2.11) by y^{k}, using (1.1c), (1.1f), (1.11) (1.13) and (1.1a), we get

$$
\begin{align*}
& \mathcal{B}_{m} \mathcal{B}_{n} H_{j}-(n-1)\left(\mathcal{B}_{r} H\right) G_{j m n}^{r}=(n-1)\left(\dot{\partial}_{j} a_{m n}\right) H+a_{m n} H_{j}+(1-n)\left(\dot{\partial}_{j} b_{m n}\right) F^{2} \tag{2.14}\\
& +(1-n) b_{m n} y_{j} .
\end{align*}
$$

Using (2.7) in (2.14), we get

$$
\begin{equation*}
\left(\mathcal{B}_{r} H\right) G_{j m n}^{r}=-\left(\dot{\partial}_{j} a_{m n}\right) H+\left(\dot{\partial}_{j} b_{m n}\right) F^{2} \tag{2.15}
\end{equation*}
$$

Suppose $\left(\mathcal{B}_{r} H\right) G_{j m n}^{r}=0$, in view of (2.15), we get

$$
\begin{equation*}
-\left(\dot{\partial}_{j} a_{m n}\right) H+\left(\dot{\partial}_{j} b_{m n}\right) F^{2}=0 . \tag{2.16}
\end{equation*}
$$

Which can be written as

$$
\begin{equation*}
\left(\dot{\partial}_{j} b_{m n}\right)=\frac{\left(\dot{\partial}_{j} a_{m n}\right) H}{F^{2}} . \tag{2.17}
\end{equation*}
$$

If the covariant tensor field $a_{m n}$ is independent of y^{i}, equation (2.17) shows that the covariant tensor field $b_{m n}$ is independent of y^{i}. conversely, if the covariant tensor $b_{m n}$ is independent of y^{i}, we get $H\left(\dot{\partial}_{j} a_{m n}\right)=0$.

In view theorem2.2, the condition $H\left(\dot{\partial}_{j} a_{m n}\right)=0$ implies $\dot{\partial}_{j} a_{m n}=0$,i.e. the covariant tensor field $a_{m n}$ is also independent of y^{i}. this leads to

Theorem 2.4. In $G \beta R-B R-F_{n}$, the covariant tensor field $b_{m n}$ is independent of the directional arguments if and only if the covariant tensor field $a_{m n}$ is independent of the directional arguments provided $\left(\mathcal{B}_{r} H\right) G_{j m n}^{r}=0$.

Suppose the tensor $a_{m n}$ is not independent of y^{i} and in view of (2.11), (2.12) and (2.17), we get

$$
\begin{equation*}
-\mathcal{B}_{m}\left(H_{r} G_{k n j}^{r}\right)-\left(\mathcal{B}_{r} H_{k}\right) G_{j m n}^{r}-\left(\mathcal{B}_{n} H_{r}\right) G_{j m k}^{r}=\dot{\partial}_{j} a_{m n}\left(H_{k}-\frac{(n-1)}{F^{2}} H y_{k}\right) \tag{2.18}
\end{equation*}
$$

Transvecting (2.18) by y^{m}, using (1.1c) and (1.1f) , we get

$$
\begin{equation*}
-\mathcal{B}_{m}\left(H_{r} G_{k n j}^{r}\right) y^{m}=\left(\dot{\partial}_{j} a_{m n}\right) y^{m}\left(H_{k}-\frac{(n-1)}{F^{2}} H y_{k}\right) . \tag{2.19}
\end{equation*}
$$

Which implies

$$
\begin{equation*}
-\mathcal{B}_{m}\left(H_{r} G_{k n j}^{r}\right) y^{m}=\left(\dot{\partial}_{j} a_{n}-a_{j n}\right)\left(H_{k}-\frac{(n-1)}{F^{2}} H y_{k}\right) \tag{2.20}
\end{equation*}
$$

where $a_{m n} y^{m}=a_{n}$

Suppose $\mathcal{B}_{m}\left(H_{r} G_{k n j}^{r}\right) y^{m}=0$, equation (2.20) has at least one of the following conditions
a) $a_{j n}=\dot{\partial}_{j} a_{n}$,
b) $H_{k}=\frac{(n-1)}{F^{2}} H y_{k}$.

Thus, we have

Theorem 2.5. In $G \beta R-B R-F_{n}$, which the covariant tensor field $a_{m n}$ is not independent of the directional argument at least one of the conditions(2.21a) and (2.21b) hold.

Suppose (2.21b) holds, then (2.18) implies

$$
\begin{equation*}
-\mathcal{B}_{m}\left(\frac{(n-1) H}{F^{2}} y_{r} G_{k n j}^{r}\right)-\left(\mathcal{B}_{r} \frac{(n-1) H}{F^{2}} y_{k}\right) G_{j m n}^{r}-\left(\mathcal{B}_{n} \frac{(n-1) H}{F^{2}} y_{r}\right) G_{j m k}^{r}=0 . \tag{2.22}
\end{equation*}
$$

Transvecting (2.22) by y^{m} and using (1.1c) and (1.1f), we get

$$
\begin{equation*}
\mathcal{B}_{m}(H) y_{r} G_{k n j}^{r} y^{m}+H\left(\mathcal{B}_{m} G_{k n j}^{r}\right) y_{r} y^{m}=0 . \tag{2.23}
\end{equation*}
$$

If $H\left(\mathcal{B}_{m} G_{k n j}^{r}\right) y_{r} y^{m}=0$, the equation (2.23) implies

$$
\begin{equation*}
y_{r} G_{k n j}^{r}=0, \text { since } \mathcal{B}_{m}(H) y^{m} \neq 0 \tag{2.24}
\end{equation*}
$$

Therefore the space is Landsberg space

Thus, we have

Theorem 2.6. An $G \beta R-B R-F_{n}$ is Landsberg space if condition (2.21b) holds and provided $H\left(\mathcal{B}_{m} G_{k n j}^{r}\right) y_{r} y^{m}=0$.

If the covariant tensor field $a_{j n} \neq \dot{\partial}_{j} a_{n}$, in view of theorem2.5, (2.21b) holds good. In view of this fact, we may rewrite theorem2.6 in the following

Theorem 2.7. An $G \beta R-B R-F_{n}$ is necessarily Landsberg space provided
$a_{j n} \neq \dot{\partial}_{j} a_{n}$ and $H\left(\mathcal{B}_{m} G_{k n j}^{r}\right) y_{r} y^{m}=0$.

Differentiating (2.4) partially with respect to y^{j}, using (1.5) and (1.1b), we get

$$
\begin{align*}
& \dot{\partial}_{j}\left(\mathcal{B}_{m} \mathcal{B}_{n} H_{k h}^{i}\right)=\left(\dot{\partial}_{j} a_{m n}\right) H_{k h}^{i}+a_{m n} H_{j k h}^{i}+\left(\dot{\partial}_{j} b_{m n}\right)\left(\delta_{k}^{i} y_{h}-\delta_{h}^{i} y_{k}\right) \tag{2.25}\\
& \quad+b_{m n}\left(\delta_{k}^{i} g_{j h}-\delta_{h}^{i} g_{j k}\right) .
\end{align*}
$$

Using commutation formula exhibited by (1.3) for $\left(\mathcal{B}_{n} H_{k h}^{i}\right)$ in (2.25), we get

$$
\begin{align*}
& \mathcal{B}_{m}\left(\dot{\partial}_{j} \mathcal{B}_{n} H_{k h}^{i}\right)-\left(\mathcal{B}_{r} H_{k h}^{i}\right) G_{j m n}^{r}+\left(\mathcal{B}_{n} H_{k h}^{r}\right) G_{j m r}^{i}-\left(\mathcal{B}_{n} H_{r k}^{i}\right) G_{j m h}^{r} \tag{2.26}\\
& \quad-\left(\mathcal{B}_{n} H_{h r}^{i}\right) G_{j m k}^{r}=\left(\dot{\partial}_{j} a_{m n}\right) H_{k h}^{i}+a_{m n} H_{j k h}^{i}+\left(\dot{\partial}_{j} b_{m n}\right)\left(\delta_{k}^{i} y_{h}-\delta_{h}^{i} y_{k}\right) \\
& +b_{m n}\left(\delta_{k}^{i} g_{j h}-\delta_{h}^{i} g_{j k}\right) .
\end{align*}
$$

Again applying the commutation formula exhibited by (1.3) for $\left(H_{k h}^{i}\right)$ in (2.26) and using (1.5), we get

$$
\begin{aligned}
& \mathcal{B}_{m}\left(\mathcal{B}_{n} H_{j k h}^{i}+H_{k h}^{r} G_{j n r}^{i}-H_{r k}^{i} G_{j n h}^{r}-H_{h r}^{i} G_{j n k}^{r}\right)-\left(\mathcal{B}_{r} H_{k h}^{i}\right) G_{j m n}^{r} \\
& +\left(\mathcal{B}_{n} H_{k h}^{r}\right) G_{j m r}^{i}-\left(\mathcal{B}_{n} H_{r k}^{i}\right) G_{j m h}^{r}-\left(\mathcal{B}_{n} H_{h r}^{i}\right) G_{j m k}^{r}=\left(\dot{\partial}_{j} a_{m n}\right) H_{k h}^{i} \\
& +a_{m n} H_{j k h}^{i}+\left(\dot{\partial}_{j} b_{m n}\right)\left(\delta_{k}^{i} y_{h}-\delta_{h}^{i} y_{k}\right)+b_{m n}\left(\delta_{k}^{i} g_{j h}-\delta_{h}^{i} g_{j k}\right) .
\end{aligned}
$$

Above equation can be written as

$$
\begin{align*}
& \quad \mathcal{B}_{m} \mathcal{B}_{n} H_{j k h}^{i}+\left(\mathcal{B}_{m} H_{k h}^{r}\right) G_{j n r}^{i}+H_{k h}^{r}\left(\mathcal{B}_{m} G_{j n r}^{i}\right)-\left(\mathcal{B}_{m} H_{r k}^{i}\right) G_{j n h}^{r} \tag{2.27}\\
& - \\
& -H_{r k}^{i}\left(\mathcal{B}_{m} G_{j n h}^{r}\right)-\left(\mathcal{B}_{m} H_{h r}^{i}\right) G_{j n k}^{r}-H_{h r}^{i}\left(\mathcal{B}_{m} G_{j n k}^{r}\right)-\left(\mathcal{B}_{r} H_{k h}^{i}\right) G_{j m n}^{r} \\
& +\left(\mathcal{B}_{n} H_{k h}^{r}\right) G_{j m r}^{i}-\left(\mathcal{B}_{n} H_{r k}^{i}\right) G_{j m h}^{r}-\left(\mathcal{B}_{n} H_{h r}^{i}\right) G_{j m k}^{r}=\left(\dot{\partial}_{j} a_{m n}\right) H_{k h}^{i} \\
& + \\
& +a_{m n} H_{j k h}^{i}+\left(\dot{\partial}_{j} b_{m n}\right)\left(\delta_{k}^{i} y_{h}-\delta_{h}^{i} y_{k}\right)+b_{m n}\left(\delta_{k}^{i} g_{j h}-\delta_{h}^{i} g_{j k}\right)
\end{align*}
$$

This shows that

$$
\begin{equation*}
\mathcal{B}_{m} \mathcal{B}_{n} H_{j k h}^{i}=a_{m n} H_{j k h}^{i}+b_{m n}\left(\delta_{k}^{i} g_{j h}-\delta_{h}^{i} g_{j k}\right) . \tag{2.28}
\end{equation*}
$$

if and only if

$$
\begin{align*}
& \left(\mathcal{B}_{m} H_{k h}^{r}\right) G_{j n r}^{i}+H_{k h}^{r}\left(\mathcal{B}_{m} G_{j n r}^{i}\right)-\left(\mathcal{B}_{m} H_{r k}^{i}\right) G_{j n h}^{r}-H_{r k}^{i}\left(\mathcal{B}_{m} G_{j n h}^{r}\right) \tag{2.29}\\
& -\left(\mathcal{B}_{m} H_{h r}^{i}\right) G_{j n k}^{r}-H_{h r}^{i}\left(\mathcal{B}_{m} G_{j n k}^{r}\right)-\left(\mathcal{B}_{r} H_{k h}^{i}\right) G_{j m n}^{r}+\left(\mathcal{B}_{n} H_{k h}^{r}\right) G_{j m r}^{i} \\
& -\left(\mathcal{B}_{n} H_{r k}^{i}\right) G_{j m h}^{r}-\left(\mathcal{B}_{n} H_{h r}^{i}\right) G_{j m k}^{r}=\left(\dot{\partial}_{j} a_{m n}\right) H_{k h}^{i}+\left(\dot{\partial}_{j} b_{m n}\right)\left(\delta_{k}^{i} y_{h}-\delta_{h}^{i} y_{k}\right) .
\end{align*}
$$

Thus, we have

Theorem 2.8. In $G \beta R-B R-F_{n}$, the Berwald curvature tensor $H_{j k h}^{i}$ is non-vanishing if and only if holds good.

Transvecting (2.29) by y^{k}, using (1.1c), (1.1f), (1.1a) and (1.6), we get

$$
\begin{align*}
& \left(\mathcal{B}_{m} H_{h}^{r}\right) G_{j n r}^{i}+H_{h}^{r}\left(\mathcal{B}_{m} G_{j n r}^{i}\right)-\left(\mathcal{B}_{m} H_{r}^{i}\right) G_{j n h}^{r} \tag{2.30}\\
& -H_{r}^{i}\left(\mathcal{B}_{m} G_{j n h}^{r}\right)-\left(\mathcal{B}_{r} H_{h}^{i}\right) G_{j m n}^{r}+\left(\mathcal{B}_{n} H_{h}^{r}\right) G_{j m r}^{i} \\
& -\left(\mathcal{B}_{n} H_{r}^{i}\right) G_{j m h}^{r}=\left(\dot{\partial}_{j} a_{m n}\right) H_{h}^{i}-\left(\dot{\partial}_{j} b_{m n}\right)\left(\delta_{h}^{i} F^{2}-y^{i} y_{h}\right) .
\end{align*}
$$

In view of (2.17) and (2.30), we get

$$
\begin{align*}
& \left(\mathcal{B}_{m} H_{h}^{r}\right) G_{j n r}^{i}+H_{h}^{r}\left(\mathcal{B}_{m} G_{j n r}^{i}\right)-\left(\mathcal{B}_{m} H_{r}^{i}\right) G_{j n h}^{r} \tag{2.31}\\
& -H_{r}^{i}\left(\mathcal{B}_{m} G_{j n h}^{r}\right)-\left(\mathcal{B}_{r} H_{h}^{i}\right) G_{j m n}^{r}+\left(\mathcal{B}_{n} H_{h}^{r}\right) G_{j m r}^{i} \\
& -\left(\mathcal{B}_{n} H_{r}^{i}\right) G_{j m h}^{r}=\left(\dot{\partial}_{j} a_{\ell m}\right)\left[H_{h}^{i}-H\left(\delta_{h}^{i}-l^{i} l_{h}\right)\right] .
\end{align*}
$$

If

$$
\begin{align*}
& \left(\mathcal{B}_{m} H_{h}^{r}\right) G_{j n r}^{i}+H_{h}^{r}\left(\mathcal{B}_{m} G_{j n r}^{i}\right)-\left(\mathcal{B}_{m} H_{r}^{i}\right) G_{j n h}^{r}-H_{r}^{i}\left(\mathcal{B}_{m} G_{j n h}^{r}\right) \tag{2.32}\\
& -\left(\mathcal{B}_{r} H_{h}^{i}\right) G_{j m n}^{r}+\left(\mathcal{B}_{n} H_{h}^{r}\right) G_{j m r}^{i}-\left(\mathcal{B}_{n} H_{r}^{i}\right) G_{j m h}^{r}=0 .
\end{align*}
$$

We have at least one of the following conditions
a) $\left(\dot{\partial}_{j} a_{m n}\right)=0$,
b) $H_{h}^{i}=H\left(\delta_{h}^{i}-l^{i} l_{h}\right)$.

Putting $H=F^{2} R, R \neq 0$, (2.33) may be written as

$$
\begin{equation*}
H_{h}^{i}=F^{2} R\left(\delta_{h}^{i}-l^{i} l_{h}\right) \tag{2.34}
\end{equation*}
$$

Therefore the space is a Finsler space of scalar curvature

Thus, we have

Theorem 2.9. An $G \beta R-B R-F_{n}$, for $(n>2)$ admitting $\left(\mathcal{B}_{m} H_{h}^{r}\right) G_{j n r}^{i}+H_{h}^{r}\left(\mathcal{B}_{m} G_{j n r}^{i}\right)-\left(\mathcal{B}_{m} H_{r}^{i}\right) G_{j n h}^{r}-$ $H_{r}^{i}\left(\mathcal{B}_{m} G_{j n h}^{r}\right)-\left(\mathcal{B}_{r} H_{h}^{i}\right) G_{j m n}^{r}+\left(\mathcal{B}_{n} H_{h}^{r}\right) G_{j m r}^{i}-\left(\mathcal{B}_{n} H_{r}^{i}\right) G_{j m h}^{r}=0$ is a Finsler space of scalar curvature provided $R \neq 0$ and the covariant tensor filed $a_{m n}$ is not independent of the directional arguments.

3. Conclusion

1. The space whose defined by condition (2.3) is called generalized βR - birecurrent Finsler space.
2. In $G \beta R-B R-F_{n}$, Berwald second covariant derivative of the $h(v)$-torsion tensor $H_{k h}^{i}$ and the deviation tensor H_{h}^{i} is given by the equations (2.4) and (2.5) ,respectively.
3. In $G \beta R-B R-F_{n}$, the $R-$ Ricci tensor $R_{j k}$, the curvature vector H_{k} and the scalar curvature H are non-vanishing .
4. In $G \beta R-B R-F_{n}$, the $H-$ Ricci tensor $H_{j k}$ is given by equation (2.12) if and only if (2.13) holds good.
5. In $G \beta R-B R-F_{n}$, the covariant tensor field $b_{m n}$ is independent of the directional arguments if and only if the covariant tensor field $a_{m n}$ is independent of the directional arguments provided $\left(\mathcal{B}_{r} H\right) G_{j m n}^{r}=0$.
6. In $G \beta R-B R-F_{n}$, which the covariant tensor field $a_{m n}$ is not independent of the directional argument at least one of the conditions (2.21a) and (2.21b) hold.
7. An $G \beta R-B R-F_{n}$ is Landsberg space if condition (2.21b) holds and provided $H\left(\mathcal{B}_{m} G_{k n j}^{r}\right) y_{r} y^{m}=0$
8. An $G \beta R-B R-F_{n}$ is necessarily Landsberg space provided $a_{j n} \neq \dot{\partial}_{j} a_{n}$ and $H\left(\mathcal{B}_{m} G_{k n j}^{r}\right) y_{r} y^{m}=0$
9. In $G \beta R-B R-F_{n}$, the Berwald curvature tensor $H_{j k h}^{i}$ is non-vanishing if and only if (2.29) holds good.
10. An $G \beta R-B R-F_{n}$, for $(n>2)$ admitting $\left(\mathcal{B}_{m} H_{h}^{r}\right) G_{j n r}^{i}+H_{h}^{r}\left(\mathcal{B}_{m} G_{j n r}^{i}\right)-\left(\mathcal{B}_{m} H_{r}^{i}\right) G_{j n h}^{r}-$ $H_{r}^{i}\left(\mathcal{B}_{m} G_{j n h}^{r}\right)-\left(\mathcal{B}_{r} H_{h}^{i}\right) G_{j m n}^{r}+\left(\mathcal{B}_{n} H_{h}^{r}\right) G_{j m r}^{i}-\left(\mathcal{B}_{n} H_{r}^{i}\right) G_{j m h}^{r}=0$ is a Finsler space of scalar curvature provided $R \neq 0$ and the covariant tensor filed $a_{m n}$ is not independent of the directional arguments.

4. Recommendations

The authors recommend the research should be continued in the Finsler spaces because it has many applications in Biology , relativity physics and other fields .

References

[1]. A.G. Walker. On Ruse's space of recurrent curvature, Proc. Land Math. Soc., 52 ,1950,pp. 36-64.
[2]. B.B.Sinha and S.P.Singh " On recurrent spaces of second order in Finsler space." Yakohama Math. J.,vol. 18,pp. 27-32, 1970.
[3]. F.Y.A .Qasem and A.A.M.Saleem' On U- birecurrent Finsler space." Univ. Aden J. Nat. and Appl . Sc.Vol. 14 No. 3 ,December. 2010.
[4]. H.S .Ruse. Three dimensional spaces of recurrent curvature: Proc. Lond. Math. Soc., 50, 1949,pp. 438-446.
[5]. P. N. Pandey. A recurrent Finsler manifold admitting special recurrent transformation: Prog . Math.,13 (1-2) , 1979 ,pp. 85-98.
[6]. P. N. Pandey . A note on recurrence vector : proc. Nat. Acad. Sci. 51A,I, 1981,pp. 6-8.
[7]. P. N. Pandey." Some problems in Finsler spaces." D.Sc. Thesis, University of Allahabad, India ,1993.
[8]. P.N. Pandey, S. Saxena, and A. Goswani 'On a Generalized H-Recurrent space." Journal of International Academy of physical Science, Vol. 15, pp. 201-211, 2011.
[9]. R .B. Misra. On a recurrent Finsler spaces :Rev .Roumhaine Math. Pures Appl. 18 ,1973,pp. 701 712.
[10]. R.S.D. Dubey and A.K. Srivastava. On recurrent Finsler spaces: Bull. Soc.Math. Belgique ,1981,pp. 283-288.
[11]. R.S. Mishra and H.D. Pande "Recurrent Finsler space." J, India Math. Soc. N.S. vol.32, pp.17-22, 1968.
[12]. R. Verma "Some transformations in Finsler spaces." Ph.D. Thesis, University of Allahabad, ,India, 1991.
[13]. S. Dikshit 'Certain types of recurrences in Finsler spaces." Ph.D. Thesis, University of Allahabad, 1992.
[14]. Y .C. Worg . Linear connections with zero torsion and recurrent curvature : Trans . Amer . Math. Soc ., 102 ,1962, pp. 471 - 506.
[15]. Y .C .Worg and K. Yano. projectively flat spaces with recurrent curvature : Comment Math . Helv .,35 ,1961, pp. 223-232 .

[^0]: * Corresponding author.

