ISSN (Print) 2313-4410, ISSN (Online) 2313-4402

© Global Society of Scientific Research and Researchers

http://asrjetsjournal.org/

On a Generalized βR – Birecurrent Finsler Space

Fahmi Yaseen Abdo Qasem^{a*}, Wafa'a Hadi Ali Hadi^b

^aDepartment of Mathematics , Faculty of Education-Aden, University of Aden, Khormaksar , Aden, Yemen ^bDepartment of Mathematics , Community College, Dar Saad , Aden, Yemen ^aEmail: Fahmiyassen1@gmail.com ^bEmail: wf_hadi@yahoo.com

Abstract

In the present paper, we introduced a Finsler space whose Cartan's third curvature tensor R_{jkh}^i satisfies $\mathcal{B}_m \mathcal{B}_n R_{jkh}^i = a_{mn} R_{jkh}^i + b_{mn} (\delta_k^i g_{jh} - \delta_h^i g_{jk}) - 2y^r \mu_n \mathcal{B}_r (\delta_k^i C_{jhm} - \delta_h^i C_{jkm})$. where a_{mn} and b_{mn} are nonzero covariant tensor fields of second order called recurrence tensor fields, such space is called as a generalized βR –birecurrent Finsler space.

The curvature tensor H_{jkh}^i , the torsion tensor H_{kh}^i , the deviation tensor H_h^i , the Ricci tensors (H_{jk}, R_{jk}) , the vector H_k and the scalar curvature tensor H of such space are non-vanishing. Under certain conditions, a generalized βR –birecurrent Finsler space becomes Landsberg space. Some conditions have been pointed out which reduce a generalized βR –birecurrent Finsler space $F_n(n > 2)$ into Finsler space of scalar curvature.

Keywords: Finsler space; Generalized βR –birecurrent Finsler space; Ricci tensor; Landsberg space; Finsler space of scalar curvature.

1. Introduction

H.S. Ruse[4] considered a three dimensional Riemannian space having the recurrent of curvature tensor and he called such space as Riemannian space of recurrent curvature. This idea was extended to n-dimensional Riemannian and non-Riemannian space by A.G. Walker [1],Y.C. Worg [14],Y.C. Worg and K. Yano [15] and others.

^{*} Corresponding author.

S. Dikshit [13] introduced a Finsler space whose Berwald curvature tensor H_{jkh}^i satisfies recurrence property in the sense of Berwald, F.Y.A.Qasem and A.A.M.Saleem [3] discussed general Finsler space for the hv –curvature tensor U_{jkh}^i satisfies the birecurrence property with respect to Berwald's coefficient G_{jk}^i and they called it *UBR- Finsler space*. P.N.pandey, S.Saxena and A.Goswami [8] introduced a Finsler space whose Berwald curvature tensor H_{jkh}^i satisfies generalized recurrence property in the sense of Berwald they called such space generalized *H*-recurrent Finsler space.

(1.1) a)
$$y_i y^i = F^2$$
 b) $g_{ij} = \partial_i y_j = \partial_j y_i$ c) $\mathcal{B}_k y^i = 0$
d) $C_{ijk} y^i = C_{kij} y^i = C_{jki} y^i = 0$ e) $\mathcal{B}_k g_{ij} = -2C_{ijkh} y^h = -2y^h \mathcal{B}_h C_{ijk}$
f) $G_{jkh}^i y^j = G_{hjk}^i y^j = G_{khj}^i y^j = 0$.

The unit vector \lfloor^i and the associate vector \lfloor_i is defined by (1.2) a) $\lfloor^i = \frac{y^i}{F}$ b) $\lfloor_i = g_{ij} \rfloor^j = \partial_i F = \frac{y_i}{F}$.

The processes of Berwald's covariant differentiation and the partial differentiation commute according to

(1.3)
$$(\dot{\partial}_k \mathcal{B}_h - \mathcal{B}_k \dot{\partial}_h) T_j^i = T_j^r G_{khr}^i - T_r^i G_{khj}^r.$$

The tensor H_{ikh}^{i} satisfies the relation

(1.5)
$$H_{jkh}^{i} = \dot{\partial}_{j} H_{kh}^{i}.$$

The torsion tensor H_{kh}^{i} satisfies

(1.6)
$$H_{kh}^{i} y^{k} = H_{h}^{i}$$
,

(1.7)
$$R_{jkh}^{i} y^{j} = H_{kh}^{i}$$
,

$$(1.8) H_{jk} = H_{jki}^{i} ,$$

$$(1.9) H_k = H_{ki}^l,$$

and

(1.10)
$$H = \frac{1}{n-1} H_i^i$$
.

where H_{jk} and H are called *h*-Ricci tensor [7] and curvature scalar respectively. Since contraction of the

indices does not affect the homogeneity in y^i , hence the tensors H_{rk} , H_r and the scalar H are also homogeneous of degree zero, one and two in y^i respectively. The above tensors are also connected by

(1.11)
$$H_{jk} y^j = H_k$$
,

(1.13)
$$H_k y^k = (n-1)H$$
.

The necessary and sufficient condition for a Finsler space $F_n(n > 2)$ to be a Finsler space of scalar curvature is given by

(1.15)
$$H_h^i = F^2 R(\delta_h^i - \lfloor^i \rfloor_h).$$

A Finsler space F_n is said to be Landsberg space if satisfies

(1.16)
$$y_r G_{ijk}^r = 0$$
.

The Ricci tensor R_{jk} is given by

(1.17)
$$R_{jki}^{i} = R_{jk}$$
.

2. Generalized βR –Birecurrent Finsler Space

A Finsler space whose Cartan's third curvature tensor R^i_{jkh} satisfies

(2.1) $\mathcal{B}_n R^i_{jkh} = \lambda_n R^i_{jkh} + \mu_n (\delta^i_k g_{jh} - \delta^i_h g_{jk})$, $R^i_{jkh} \neq 0$, where λ_n and μ_n are non-zero covariant vector fields and called the recurrence vector fields, we shall call such Finsler space as a generalized *R*- recurrent Finsler space.

Differentiating (2.1) covariantly with respect to x^m in the sense of Berwald and using (1.1e), we get

(2.2)
$$\mathcal{B}_m \mathcal{B}_n R^i_{jkh} = (\mathcal{B}_m \lambda_n + \lambda_n \lambda_m) R^i_{jkh} + (\lambda_n \mu_m + \mathcal{B}_m \mu_n) \left(\delta^i_k g_{jh} - \delta^i_h g_{jk} \right)$$

$$-2y^r\mu_n\mathcal{B}_r(\delta^i_k\mathcal{C}_{jhm}-\delta^i_h\mathcal{C}_{jkm}).$$

Which can be written as

$$(2.3) \qquad \mathcal{B}_m \mathcal{B}_n R^i_{jkh} = a_{mn} R^i_{jkh} + b_{mn} \left(\delta^i_k g_{jh} - \delta^i_h g_{jk} \right) - 2y^r \mu_n \mathcal{B}_r \left(\delta^i_k \mathcal{C}_{jhm} - \delta^i_h \mathcal{C}_{jkm} \right).$$

where $a_{mn} = \mathcal{B}_m \lambda_n + \lambda_n \lambda_m$ and $b_{mn} = \lambda_n \mu_m + \mathcal{B}_m \mu_n$ are non-zero covariant tensor fields of second order.

Definition 2.1. A Finsler space F_n whose Cartan's third curvature tensor R_{jkh}^i satisfies the condition (2.3) will be called generalized βR -birecurrent Finsler space ,we shall denote it $G\beta R - BR - F_n$.

Transvecting (2.3) by y^j , using (1.1c), (1.7) and (1.1d), we get

(2.4)
$$\mathcal{B}_m \mathcal{B}_n H_{kh}^i = a_{mn} H_{kh}^i + b_{mn} \left(\delta_k^i y_h - \delta_h^i y_k \right).$$

Further transvecting (2.4) by y^k , using (1.1c), (1.6) and (1.1a), we get

(2.5)
$$\mathcal{B}_m \mathcal{B}_n H_h^i = a_{mn} H_h^i + b_{mn} (y^i y_h - \delta_h^i F^2).$$

Thus, we have

Theorem 2.1. In $G\beta R - BR - F_n$, Berwald second covariant derivative of the h(v) -torsion tensor H_{kh}^i and the deviation tensor H_h^i is given by the equations (2.4) and (2.5) ,respectively.

Contracting the indices i and h in (2.3), (2.4) and (2.5), respectively and using (1.17), (1.9) and (1.10), we get

(2.6)
$$\mathcal{B}_m \mathcal{B}_n R_{jk} = a_{mn} R_{jk} + (1-n) b_{mn} g_{jk} - 2(1-n) y^r \mu_n \mathcal{B}_r C_{jkm}.$$

(2.7)
$$\mathcal{B}_m \mathcal{B}_n H_k = a_{mn} H_k + (1-n) b_{mn} y_k.$$

and

(2.8)
$$\mathcal{B}_m \mathcal{B}_n H = a_{mn} H - b_{mn} F^2.$$

Thus, we have

Theorem 2.2. In $G\beta R - BR - F_n$, the R – Ricci tensor R_{jk} , the curvature vector H_k and the scalar curvature H are non-vanishing.

Differentiating (2.7) partially with respect to y^{j} and using (1.1b), we get

(2.9)
$$\dot{\partial}_{j}(\mathcal{B}_{m}\mathcal{B}_{n}H_{k}) = (\dot{\partial}_{j}a_{mn})H_{k} + a_{mn}(\dot{\partial}_{j}H_{k}) + (1-n)(\dot{\partial}_{j}b_{mn})y_{k} + (1-n)b_{mn}g_{jk}.$$

Using commutation formula exhibited by (1.3) for $(\mathcal{B}_n H_k)$ in (2.9) and using (1.12), we get

(2.10)
$$\mathcal{B}_m \dot{\partial}_j (\mathcal{B}_n H_k) - (\mathcal{B}_r H_k) G_{jmn}^r - (\mathcal{B}_n H_r) G_{jmk}^r = (\dot{\partial}_j a_{mn}) H_k$$

$$+a_{mn}H_{jk} + (1-n)(\partial_j b_{mn})y_k + (1-n)b_{mn}g_{jk}$$

Again applying the commutation formula exhibited by (1.3) for (H_k) , we get

$$(2.11) \qquad \mathcal{B}_m \mathcal{B}_n H_{jk} - \mathcal{B}_m \left(H_r G_{knj}^r \right) - (\mathcal{B}_r H_k) G_{jmn}^r - (\mathcal{B}_n H_r) G_{jmk}^r$$
$$= \left(\hat{\partial}_j a_{mn} \right) H_k + a_{mn} H_{jk} + (1-n) \left(\hat{\partial}_j b_{mn} \right) y_k + (1-n) b_{mn} g_{jk}$$

This shows that

(2.12)
$$\mathcal{B}_m \mathcal{B}_n H_{jk} = a_{mn} H_{jk} + (1-n) b_{mn} g_{jk}.$$

if and only if

$$(2.13) \qquad -\mathcal{B}_m\left(H_rG_{knj}^r\right) - (\mathcal{B}_rH_k)G_{jmn}^r - (\mathcal{B}_nH_r)G_{jmk}^r = \left(\dot{\partial}_j a_{mn}\right)H_k + (1-n)\left(\dot{\partial}_j b_{mn}\right)y_k.$$

Thus, we have

Theorem 2.3. In $G\beta R - BR - F_n$, the *H*-Ricci tensor H_{jk} is given by equation (2.12) if and only if (2.13) holds good.

Transvecting (2.11) by y^k , using (1.1c), (1.1f), (1.11) (1.13) and (1.1a), we get

(2.14)
$$\mathcal{B}_{m}\mathcal{B}_{n}H_{j} - (n-1)(\mathcal{B}_{r}H)G_{jmn}^{r} = (n-1)(\dot{\partial}_{j}a_{mn})H + a_{mn}H_{j} + (1-n)(\dot{\partial}_{j}b_{mn})F^{2} + (1-n)b_{mn}y_{j}.$$

Using (2.7) in (2.14), we get

(2.15)
$$(\mathcal{B}_r H) G_{jmn}^r = -(\dot{\partial}_j a_{mn}) H + (\dot{\partial}_j b_{mn}) F^2.$$

Suppose $(\mathcal{B}_r H)G_{jmn}^r = 0$, in view of (2.15), we get

$$(2.16) \qquad -(\dot{\partial}_j a_{mn})H + (\dot{\partial}_j b_{mn})F^2 = 0.$$

Which can be written as

(2.17)
$$\left(\dot{\partial}_j b_{mn}\right) = \frac{(\dot{\partial}_j a_{mn})_H}{F^2}.$$

If the covariant tensor field a_{mn} is independent of y^i , equation (2.17) shows that the covariant tensor field b_{mn} is independent of y^i . conversely, if the covariant tensor b_{mn} is independent of y^i , we get $H(\dot{\partial}_j a_{mn}) = 0$.

In view theorem2.2, the condition $H(\dot{\partial}_j a_{mn}) = 0$ implies $\dot{\partial}_j a_{mn} = 0$, i.e. the covariant tensor field a_{mn} is also independent of y^i . this leads to

Theorem 2.4. In $G\beta R - BR - F_n$, the covariant tensor field b_{mn} is independent of the directional arguments if and only if the covariant tensor field a_{mn} is independent of the directional arguments provided $(\mathcal{B}_r H)G_{jmn}^r = 0$.

Suppose the tensor a_{mn} is not independent of y^i and in view of (2.11), (2.12) and (2.17), we get

(2.18)
$$-\mathcal{B}_m(H_r G_{knj}^r) - (\mathcal{B}_r H_k) G_{jmn}^r - (\mathcal{B}_n H_r) G_{jmk}^r = \dot{\partial}_j a_{mn} (H_k - \frac{(n-1)}{F^2} H y_k).$$

Transvecting (2.18) by y^m , using (1.1c) and (1.1f), we get

(2.19)
$$-\mathcal{B}_m(H_r G_{knj}^r) y^m = (\dot{\partial}_j a_{mn}) y^m (H_k - \frac{(n-1)}{F^2} H y_k).$$

Which implies

(2.20)
$$-\mathcal{B}_m(H_r G_{knj}^r) y^m = (\dot{\partial}_j a_n - a_{jn}) (H_k - \frac{(n-1)}{F^2} H y_k) .$$

where $a_{mn}y^m = a_n$

Suppose $\mathcal{B}_m(H_r G_{knj}^r) y^m = 0$, equation (2.20) has at least one of the following conditions

(2.21) a)
$$a_{jn} = \dot{\partial}_j a_n$$
, b) $H_k = \frac{(n-1)}{F^2} H y_k$.

Thus, we have

Theorem 2.5. In $G\beta R - BR - F_n$, which the covariant tensor field a_{mn} is not independent of the directional argument at least one of the conditions(2.21a) and (2.21b) hold.

Suppose (2.21b) holds, then (2.18) implies

(2.22)
$$-\mathcal{B}_m\left(\frac{(n-1)H}{F^2}y_rG_{knj}^r\right) - \left(\mathcal{B}_r\frac{(n-1)H}{F^2}y_k\right)G_{jmn}^r - \left(\mathcal{B}_n\frac{(n-1)H}{F^2}y_r\right)G_{jmk}^r = 0.$$

Transvecting (2.22) by y^m and using (1.1c) and (1.1f), we get

(2.23)
$$\mathcal{B}_m(H)y_r G_{knj}^r y^m + H \left(\mathcal{B}_m G_{knj}^r \right) y_r y^m = 0.$$

If $H(\mathcal{B}_m G_{knj}^r) y_r y^m = 0$, the equation (2.23) implies

(2.24)
$$y_r G_{knj}^r = 0$$
, since $\mathcal{B}_m(H) y^m \neq 0$

Therefore the space is Landsberg space

Thus, we have

Theorem 2.6. An $G\beta R - BR - F_n$ is Landsberg space if condition (2.21b) holds and provided $H(\mathcal{B}_m G_{knj}^r) y_r y^m = 0$.

If the covariant tensor field $a_{jn} \neq \dot{\partial}_j a_n$, in view of theorem2.5, (2.21b) holds good. In view of this fact, we may rewrite theorem2.6 in the following

Theorem 2.7. An $G\beta R - BR - F_n$ is necessarily Landsberg space provided

$$a_{jn} \neq \dot{\partial}_j a_n$$
 and $H(\mathcal{B}_m G_{knj}^r) y_r y^m = 0$.

Differentiating (2.4) partially with respect to y^{j} , using (1.5) and (1.1b), we get

$$(2.25) \qquad \dot{\partial}_{j} \Big(\mathcal{B}_{m} \mathcal{B}_{n} H_{kh}^{i} \Big) = \Big(\dot{\partial}_{j} a_{mn} \Big) H_{kh}^{i} + a_{mn} H_{jkh}^{i} + (\dot{\partial}_{j} b_{mn}) \Big(\delta_{k}^{i} y_{h} - \delta_{h}^{i} y_{k} \Big) + b_{mn} \big(\delta_{k}^{i} g_{jh} - \delta_{h}^{i} g_{jk} \big) .$$

Using commutation formula exhibited by (1.3) for $(\mathcal{B}_n H_{kh}^i)$ in (2.25), we get

$$(2.26) \qquad \mathcal{B}_m(\dot{\partial}_j \mathcal{B}_n H^i_{kh}) - (\mathcal{B}_r H^i_{kh}) G^r_{jmn} + (\mathcal{B}_n H^r_{kh}) G^i_{jmr} - (\mathcal{B}_n H^i_{rk}) G^r_{jmh}$$
$$-(\mathcal{B}_n H^i_{hr}) G^r_{jmk} = (\dot{\partial}_j a_{mn}) H^i_{kh} + a_{mn} H^i_{jkh} + (\dot{\partial}_j b_{mn}) \left(\delta^i_k y_h - \delta^i_h y_k\right)$$
$$+ b_{mn} (\delta^i_k g_{jh} - \delta^i_h g_{jk}).$$

Again applying the commutation formula exhibited by (1.3) for (H_{kh}^i) in (2.26) and using (1.5), we get

$$\begin{aligned} &\mathcal{B}_m \Big(\mathcal{B}_n H^i_{jkh} + H^r_{kh} G^i_{jnr} - H^i_{rk} G^r_{jnh} - H^i_{hr} G^r_{jnk} \Big) - (\mathcal{B}_r H^i_{kh}) G^r_{jmn} \\ &+ (\mathcal{B}_n H^r_{kh}) G^i_{jmr} - (\mathcal{B}_n H^i_{rk}) G^r_{jmh} - (\mathcal{B}_n H^i_{hr}) G^r_{jmk} = (\dot{\partial}_j a_{mn}) H^i_{kh} \\ &+ a_{mn} H^i_{jkh} + (\dot{\partial}_j b_{mn}) \Big(\delta^i_k y_h - \delta^i_h y_k \Big) + b_{mn} \Big(\delta^i_k g_{jh} - \delta^i_h g_{jk} \Big). \end{aligned}$$

Above equation can be written as

$$(2.27) \qquad \mathcal{B}_{m}\mathcal{B}_{n}H_{jkh}^{i} + (\mathcal{B}_{m}H_{kh}^{r})G_{jnr}^{i} + H_{kh}^{r}(\mathcal{B}_{m}G_{jnr}^{i}) - (\mathcal{B}_{m}H_{rk}^{i})G_{jnh}^{r} -H_{rk}^{i}(\mathcal{B}_{m}G_{jnh}^{r}) - (\mathcal{B}_{m}H_{hr}^{i})G_{jnk}^{r} - H_{hr}^{i}(\mathcal{B}_{m}G_{jnk}^{r}) - (\mathcal{B}_{r}H_{kh}^{i})G_{jmn}^{r} + (\mathcal{B}_{n}H_{kh}^{r})G_{jmr}^{i} - (\mathcal{B}_{n}H_{rk}^{i})G_{jmh}^{r} - (\mathcal{B}_{n}H_{hr}^{i})G_{jmk}^{r} = (\dot{\partial}_{j}a_{mn})H_{kh}^{i} + a_{mn}H_{jkh}^{i} + (\dot{\partial}_{j}b_{mn})(\delta_{k}^{i}y_{h} - \delta_{h}^{i}y_{k}) + b_{mn}(\delta_{k}^{i}g_{jh} - \delta_{h}^{i}g_{jk}) .$$

This shows that

(2.28)
$$\mathcal{B}_m \mathcal{B}_n H^i_{jkh} = a_{mn} H^i_{jkh} + b_{mn} (\delta^i_k g_{jh} - \delta^i_h g_{jk}) \,.$$

if and only if

$$(2.29) \qquad (\mathcal{B}_{m}H_{kh}^{r})G_{jnr}^{i} + H_{kh}^{r}(\mathcal{B}_{m}G_{jnr}^{i}) - (\mathcal{B}_{m}H_{rk}^{i})G_{jnh}^{r} - H_{rk}^{i}(\mathcal{B}_{m}G_{jnh}^{r}) - (\mathcal{B}_{m}H_{hr}^{i})G_{jnk}^{r} - H_{hr}^{i}(\mathcal{B}_{m}G_{jnk}^{r}) - (\mathcal{B}_{r}H_{kh}^{i})G_{jmn}^{r} + (\mathcal{B}_{n}H_{kh}^{r})G_{jmr}^{i} - (\mathcal{B}_{n}H_{rk}^{i})G_{jmh}^{r} - (\mathcal{B}_{n}H_{hr}^{i})G_{jmk}^{r} = (\dot{\partial}_{j}a_{mn})H_{kh}^{i} + (\dot{\partial}_{j}b_{mn})(\delta_{k}^{i}y_{h} - \delta_{h}^{i}y_{k}).$$

Thus, we have

Theorem 2.8. In $G\beta R - BR - F_n$, the Berwald curvature tensor H_{jkh}^i is non-vanishing if and only if (2. 29) holds good.

Transvecting (2.29) by y^k , using (1.1c), (1.1f), (1.1a) and (1.6), we get

$$(2.30) \qquad (\mathcal{B}_m H_h^r) G_{jnr}^i + H_h^r (\mathcal{B}_m G_{jnr}^i) - (\mathcal{B}_m H_r^i) G_{jnh}^r$$
$$-H_r^i (\mathcal{B}_m G_{jnh}^r) - (\mathcal{B}_r H_h^i) G_{jmn}^r + (\mathcal{B}_n H_h^r) G_{jmr}^i$$
$$-(\mathcal{B}_n H_r^i) G_{jmh}^r = (\dot{\partial}_j a_{mn}) H_h^i - (\dot{\partial}_j b_{mn}) (\delta_h^i F^2 - y^i y_h).$$

In view of (2.17) and (2.30), we get

$$(2.31) \qquad (\mathcal{B}_m H_h^r) G_{jnr}^i + H_h^r (\mathcal{B}_m G_{jnr}^i) - (\mathcal{B}_m H_r^i) G_{jnh}^r$$
$$-H_r^i (\mathcal{B}_m G_{jnh}^r) - (\mathcal{B}_r H_h^i) G_{jmn}^r + (\mathcal{B}_n H_h^r) G_{jmr}^i$$
$$-(\mathcal{B}_n H_r^i) G_{jmh}^r = (\dot{\partial}_j a_{\ell m}) [H_h^i - H(\delta_h^i - \lfloor^i \lfloor_h)].$$

If

$$(2.32) \qquad (\mathcal{B}_m H_h^r) G_{jnr}^i + H_h^r (\mathcal{B}_m G_{jnr}^i) - (\mathcal{B}_m H_r^i) G_{jnh}^r - H_r^i (\mathcal{B}_m G_{jnh}^r)$$
$$- (\mathcal{B}_r H_h^i) G_{jmn}^r + (\mathcal{B}_n H_h^r) G_{jmr}^i - (\mathcal{B}_n H_r^i) G_{jmh}^r = 0 \;.$$

We have at least one of the following conditions

(2.33) a) $(\dot{\partial}_j a_{mn}) = 0$, b) $H_h^i = H(\delta_h^i - \lfloor^i \rfloor_h)$.

Putting $H = F^2 R$, $R \neq 0$, (2.33) may be written as

(2.34)
$$H_h^i = F^2 R(\delta_h^i - \lfloor^i \rfloor_h).$$

Therefore the space is a Finsler space of scalar curvature

Thus, we have

Theorem 2.9. An $G\beta R - BR - F_n$, for (n > 2) admitting $(\mathcal{B}_m H_h^r) G_{jnr}^i + H_h^r (\mathcal{B}_m G_{jnr}^i) - (\mathcal{B}_m H_r^i) G_{jnh}^r - H_r^i (\mathcal{B}_m G_{jnh}^r) - (\mathcal{B}_r H_h^i) G_{jmn}^r - (\mathcal{B}_n H_r^i) G_{jmh}^r = 0$ is a Finsler space of scalar curvature provided $R \neq 0$ and the covariant tensor filed a_{mn} is not independent of the directional arguments.

3. Conclusion

- 1. The space whose defined by condition (2.3) is called generalized βR birecurrent Finsler space.
- 2. In $G\beta R BR F_n$, Berwald second covariant derivative of the h(v) -torsion tensor H_{kh}^i and the deviation tensor H_h^i is given by the equations (2.4) and (2.5) ,respectively.
- 3. In $G\beta R BR F_n$, the R Ricci tensor R_{jk} , the curvature vector H_k and the scalar curvature H are non-vanishing.
- 4. In $G\beta R BR F_n$, the *H*-Ricci tensor H_{jk} is given by equation (2.12) if and only if (2.13) holds good.
- 5. In $G\beta R BR F_n$, the covariant tensor field b_{mn} is independent of the directional arguments if and only if the covariant tensor field a_{mn} is independent of the directional arguments provided $(\mathcal{B}_r H)G_{imn}^r = 0.$
- 6. In $G\beta R BR F_n$, which the covariant tensor field a_{mn} is not independent of the directional argument at least one of the conditions (2.21a) and (2.21b) hold.
- 7. An $G\beta R BR F_n$ is Landsberg space if condition (2.21b) holds and provided $H(\mathcal{B}_m G_{knj}^r)y_r y^m = 0$
- 8. An $G\beta R BR F_n$ is necessarily Landsberg space provided $a_{jn} \neq \dot{\partial}_j a_n$ and $H(\mathcal{B}_m G_{knj}^r) y_r y^m = 0$
- 9. In $G\beta R BR F_n$, the Berwald curvature tensor H^i_{jkh} is non-vanishing if and only if (2. 29) holds good.
- 10. An $G\beta R BR F_n$, for (n > 2) admitting $(\mathcal{B}_m H_h^r)G_{jnr}^i + H_h^r(\mathcal{B}_m G_{jnr}^i) (\mathcal{B}_m H_r^i)G_{jnh}^r H_r^i(\mathcal{B}_m G_{jnh}^r) (\mathcal{B}_r H_h^i)G_{jmn}^r + (\mathcal{B}_n H_h^r)G_{jmr}^i (\mathcal{B}_n H_r^i)G_{jmh}^r = 0$ is a Finsler space of scalar curvature provided $R \neq 0$ and the covariant tensor filed a_{mn} is not independent of the directional arguments.

4. Recommendations

The authors recommend the research should be continued in the Finsler spaces because it has many applications in Biology, relativity physics and other fields.

References

- [1]. A.G. Walker. On Ruse's space of recurrent curvature, Proc. Land Math. Soc., 52, 1950, pp. 36-64.
- [2]. B.B.Sinha and S.P.Singh " On recurrent spaces of second order in Finsler space." Yakohama Math. J.,vol. 18,pp. 27-32, 1970.
- [3]. **F.Y.A .Qasem** and **A.A.M.Saleem''** On U- birecurrent Finsler space." Univ. Aden J. Nat. and Appl. Sc.Vol.14 No.3 ,December. 2010.
- [4]. H.S .Ruse. Three dimensional spaces of recurrent curvature: Proc. Lond. Math. Soc., 50, 1949,pp. 438-446.
- [5]. P. N. Pandey. A recurrent Finsler manifold admitting special recurrent transformation: Prog. Math., 13 (1-2), 1979, pp. 85-98.
- [6]. P. N. Pandey . A note on recurrence vector : proc. Nat. Acad. Sci. 51A, I, 1981, pp. 6-8.
- [7]. P. N. Pandey." Some problems in Finsler spaces." D.Sc. Thesis, University of Allahabad, India ,1993.
- [8]. P.N. Pandey, S. Saxena, and A. Goswani "On a Generalized H-Recurrent space." Journal of International Academy of physical Science, Vol. 15, pp. 201-211, 2011.
- [9]. R.B. Misra. On a recurrent Finsler spaces :Rev .Roumhaine Math. Pures Appl.18 ,1973,pp.701 -712.
- [10]. R.S.D. Dubey and A.K. Srivastava. On recurrent Finsler spaces: Bull. Soc.Math. Belgique ,1981,pp. 283-288.
- [11]. R.S. Mishra and H.D. Pande "Recurrent Finsler space." J, India Math. Soc. N.S. vol.32, pp.17-22, 1968.
- [12]. R. Verma "Some transformations in Finsler spaces." Ph.D. Thesis, University of Allahabad, India, 1991.
- [13]. S. Dikshit "Certain types of recurrences in Finsler spaces." Ph.D. Thesis, University of Allahabad, 1992.
- [14]. Y.C. Worg. Linear connections with zero torsion and recurrent curvature : Trans . Amer . Math. Soc., 102, 1962, pp.471 – 506.
- [15]. Y.C. Worg and K. Yano. projectively flat spaces with recurrent curvature : Comment Math . Helv .,35 ,1961, pp. 223 – 232 .