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Abstract 

Many thermal techniques are used in various industries in order to enhance cooling and heating of fluids in 

contact with a surface. Some of these techniques include rotation of fluids inside an enclosure in an attempt to 

improve the thermal exchange between the fluid flows and the contact surfaces. These methods involve complex 

heat transfer mechanisms, therefore the need of numerical simulations is crucial for understanding them. In the 

current study, a numerical investigation of the fluid flow and heat transfer in a rotating enclosure was 

completed. First, heat transfer from a fluid in a cylindrical enclosure with forced convection boundary 

conditions was numerically simulated and compared to known analytical solutions for benchmarking purposes. 

An excellent agreement between the numerical and analytical solutions was obtained. Then, heat transfer and 

internal flow behaviors in a container rotating at different angular velocities were numerically studied. Velocity 

and temperature distributions were studied. Comparison between numerical and analytical solutions was 

completed for cases where analytical solutions are available. For low Reynolds number, temperature distribution 

in a full container was observed not to depend on the rotation rate which is in good agreement with the 

analytical findings from the non-dimensional energy equation. 
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1. Introduction 

Many thermal techniques consist of heating or cooling of fluids in an enclosure for a determined time and 

temperature. Time is very important to control through the thermal process since many variables such rotational 

speed, container location, mode of rotation, headspace and product properties, affect the heat transfer rate.  

Abdul Ghani et al. investigated the rotation effects on purification method of a viscous fluid in a horizontal 

container, using numerical analysis. Based on solving the governing equations of mass, momentum and energy 

conservation for the three-dimensional horizontal container, their target was to present the transient temperature 

distribution caused by natural and forced convection heating and to compare it with those for a non-rotating 

container. As a result of the numerical simulations, the slowest heating zone (SHZ) was found to be reduced to 

5% of the total volume of the rotated container [1]. 

Erdogdu et al. analyzed the effect of rotation on heat transfer process in rotating container containing fluids with 

headspace. The objective of their study was to analyze the evolution of the temperature distribution in cans 

containing headspace with the fluids while rotating, in order to verify the function of headspace in increasing the 

convective heat transfer rate. The optimal rotating process conditions were found to depend on the fluid physical 

properties (viscosity and density) and rotation speed. In fact, viscosity is the major factor that affects the heat 

transfer rate in this case. [2]. 

Using CFD simulations, Kannan et al. studied heat transfer from a fluid in an enclosure in a still retort which it 

led them to predict the heat transfer coefficient. Also, they compared heat transfer coefficient with respect to 

various surfaces of the uniformly heated cylindrical container. They found that the curved surface and due to its 

large surface area, dominates the heat transfer process [3]. The objective of the current study is to numerically 

investigate rotation effects on enhancing the heat transfer from/to a fluid in an enclosure. The influence of 

varying the wall boundary conditions and Reynolds number on the velocity and temperature distribution with 

respect to time was also investigated in this study. 

2. Validation Problem  

Beverage industries use thermal processing method to cool liquid inside storage cans in a faster way without 

distorting the beverage taste like the traditional way. In fact they introduced rotation process to the problem in 

order to increase the heat transfer.  

In this problem, heat transfer from a stationary fluid in a cylindrical container is used as a validation problem. 

The application of a higher heat transfer coefficient by using water as the working fluid and forced convection 

method is studied.  

2.1. Anlytical Study  

Analytical study was completed where the heat diffusion equation was solved in time and space, and the 

solution is as follows:  
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This problem is also numerically simulated in ANSYS FLUENT and results are compared to the analytical 

solution presented in equation 1 above. The soda can was simulated as a long cylinder (Diameter = 6.6 cm). The 

end effects were neglected. Figure 1 below shows the geometry of the can together with the adopted boundary 

conditions.  

 

 

 

 

Figure 1: A schematic of the geometry and boundary conditions 

Figure 2 below shows the geometry of the studied problem as simulated in ANSYS FLUENT. 

 

 

 

 

 

 

Figure 2: 3D geometry of the full disk as simulated in ANSYS FLUENT 

2.2. Numerical Study  

A circular computational domain was used in this study to perform the numerical calculations. The cylindrical 

coordinate system was adopted with the origin coinciding with the center of the rotating container. The flow is 

assumed to be two-dimensional, incompressible, transient and laminar. The working fluid is soda with constant 

physical properties as follows: 

• Density 𝜌 = 1000 𝑘𝑔/𝑚3 

• Dynamic viscosity 𝜇 = 0.001731 𝑘𝑔/𝑚. 𝑠 
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• Specific heat 𝐶𝑝 = 4178  𝐽/𝑘𝑔.𝐾 

• Thermal conductivity 𝑘 = 0.55 𝑊/𝑚.𝐾 

The can was considered an infinite cylinder, so the temperature varies with respect to the radius r and the time t. 

The buoyancy effects were neglected. 

The governing equations in this study are the continuity, momentum and energy equations and are expressed in 

cylindrical coordinates as follows: 
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Where the body forces are negligible, 𝑓𝜃 = 0 . 

The associated boundary and initial conditions used to solve Equations 2 through 5 are described as follows: 

• At the rotation wall (at r = R): 

o For the thermal boundary condition, a uniform constant heat transfer coefficient was imposed: 

( )s
r R

Tk h T T
r ∞

=

∂
− = −

∂                                      (6) 

o For the hydrodynamic boundary conditions,  a no-slip boundary condition was imposed at the surface 

of the cylinder where the velocities at the surface (at r = R), were taken as follows: 

0rV Vθ = =                   (7) 
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• The initial conditions (at time t = 0) were used as follows: 

( , ,0) iT r Tθ =    (8) 

0rV Vθ = =    (9) 

Numerical simulations were performed using the general purpose CFD code, ANSYS FLUENT, in order to 

solve Equations 2 through 5 together with the given boundary and initial conditions presented in Equations 6 

through 9. A non-uniform grid system was used in all the simulations as shown in Figure 3 below. The domain 

was divided into 10348 elements, with a finer grid near the wall. A grid independence study was completed. As 

a result, the solution in this problem was independent of time-step and grid size. The convective terms were 

discretized with second-order upwind scheme. The convergence criteria were set to 10−4 for the momentum 

equations and 10−6  for the energy equations. 

 

 

 

 

 

Figure 3: Non-uniform grid 

2.3. Validation Problem Results and Discussions  

The investigated problem above was observed to mainly depend on the conduction resistance in the container 

since at lowest Biot number the convection resistance is very small. Therefore, an increase in the heat transfer 

convection coefficient barely affects the temperature distribution inside the container. Based on the analytical 

solution, it was found that it takes about twenty minutes to reach an average temperature of 11℃ if the initial 

temperature is 24℃.  

The numerically calculated temperature profiles were compared to the analytical solution presented in 

Equation 1, and results are shown in Figure 4 below. An excellent agreement was obtained between the 

numerical and analytical solutions of this problem as shown in the figure below. 

3. Heat Transfer from a Fluid in a Rotating Cylinder   

This section of the study focuses on the flow and thermal solutions inside the rotating container. Initially, the 

velocity and temperature distributions of a fluid in a rotating cylinder are investigated under steady conditions. 
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An analytical solution for the velocity distribution inside the rotating cylinder was obtained. An attempt to 

obtain the temperature distribution for this problem was also conducted. A partial differential equation 

governing the temperature distribution together with the corresponding boundary conditions was obtained. An 

explicit analytical expression for the temperature distribution under these conditions was not obtained, however 

those temperature distributions were obtained numerically. 

 

Figure 4: Comparison between the numerical and analytical temperature distributions at different time steps 

 

In real life applications, the velocity and temperature distributions in a rotating container evolve from prescribed 

initial profiles to final steady state conditions over a non-negligible time period that depends on the fluid 

properties and the prescribed boundary conditions.  

During this evolution time period, the velocity field develops from zero to a steady profile. However, the 

analytical solution for the temperature distribution for this problem during this evolution time period is a 

challenging task since the energy equation involves the velocity field which is also function of time and space. 

Therefore, the numerical approach was adopted to solve the temperature distribution for this problem.  

Figure 4 below shows a sketch of the problem being investigated. 

3.1. Anlytical Solution   

The velocity distribution in a fluid in a long cylinder rotating at constant velocity is solved analytically. The 

fluid is assumed to have constant properties with no axial motion or end effects. Since there is circular 

symmetry, the velocity distribution under steady state conditions becomes: 

w
rV V
Rθ

 =  
 

   (10) 
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where Vw is the velocity of the can wall, and R is the radius of the can.  

 

 

 

 

Figure 4: Geometry of the disk that is rotating at a uniform angular velocity 

3.2. Numerical Study  

The same circular computation domain presented in section 2.2 was adopted in this problem. The fluid inside 

the cylinder is soda with the same fluid properties listed previously. Equations 2 through 5 were solved with the 

boundary and initial conditions described below.  

• At the rotation wall (at r = R): 

o For the thermal boundary, this problem was initially solved with a uniform constant temperature: 

274.15wallr R
T T K

=
= =

                                     (11) 

o The hydrodynamic boundary conditions were set as follows:  

0.33 /
r R

V wR m sθ =
= =

                                     (12)

0 /r r R
V m s

=
=

                                      (13) 

The same problem was solved again with another thermal boundary condition at the wall. In this case, a 

convection boundary condition with constant heat transfer coefficient, h, was imposed at the rotating wall (at r = 

R) and is expressed as follows: 

( )s
r R

Tk h T T
r ∞

=

∂
− = −

∂
   (14) 

The initial boundary conditions (at t = 0) were taken as follows: 

( , ,0) 298.15iT r T Kθ = =    (15) 

The numerical simulations were also conducted in ANSYS FLUENT. The same non-uniform grid described 

previously was used for this problem and the convergence criteria were set as described in section 2.2. 
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3.3. Results and Discussions  

The numerical velocity distribution is compared with the analytical expression obtained in Equation 10 and is 

shown in Figure 5 below. An excellent agreement is obtained between both analytical and numerical solutions 

of the angular velocity𝑉𝜃. The numerical solution for the velocity distribution in the figure below was obtained 

after a long time in order to be able to assume that the flow has already reached its steady state velocity 

distribution. 

 

 

 

 

 

 

 

Figure 5: Steady state dimensionless velocity distribution 

In real life applications, the can rotation causes a transient internal flow for a short time period. Figures 6 and 7 

show the numerical solution of the velocity evolution at different dimensionless time steps. As shown in these 

plots, it takes the velocity field approximately 𝑡∗ = 20 to reach steady state conditions.  

 

 

 

 

 

 

 

Figure 6: Dimensionless velocity distribution at different 𝑡∗ 
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Figure 7: Dimensionless velocity distribution at different 𝑡∗ 

The partial differential energy equation was not solved explicitly for this problem due to its complexity. 

However a non-dimensional analysis was completed and yielded important results. Applying the hydrodynamic 

solution together with the adopted boundary conditions, the energy equation becomes: 

1 1T Tr
t r r rα

∂ ∂ ∂ =  ∂ ∂ ∂ 
   (16) 

Non-dimensionalizing the energy equation above using: 
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Results in the following non-dimensional energy equation: 

* *
*

* * * *

1T Tr
t r r r

 ∂ ∂ ∂
=  ∂ ∂ ∂ 

   (20) 

The non-dimensional energy equation 20 is solved together with the following initial and boundary conditions 

for constant temperature: 

* *( ,0) 1T r =    (21) 
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* (1, ) 0T t =    (23) 

And with the following initial and boundary conditions for constant heat transfer coefficient: 
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Figures 8 through 11 show the temperature profiles at different times during the cooling process for the different 

adopted boundary conditions. 

This problem with constant heat transfer coefficient was solved at two different Reynolds numbers which are 0 

and 6291. The dimensionless profiles are compared in Figure 8, and the corresponding average decay with 

respect to time is compared in Figure 9. 

 

 

 

 

 

 

 

 

 

Figure 8: Dimensionless radial temperature distribution at constant heat transfer coefficient with 5 minutes 

interval time for two different Reynolds numbers (Re = 0; Re = 6291) 
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Figure 9: Average temperature distribution for different Reynolds numbers 

 

The same illustrations are shown for constant temperature boundary conditions in Figures 10 and 11.  

 

 

 

 

 

 

 

 

Figure 10: Comparison of the dimensionless radial temperature distribution at constant wall temperature with 5 

minutes interval time for 3 different Reynolds numbers (Re = 0; Re = 1000; Re = 6291) 

As shown in Figure 8, for constant heat transfer boundary conditions, rotating the container at a Re = 6291 

showed a minor impact on the temperature distribution and no impact on the average temperature decay with 

respect to time as shown in Figure 9. For constant wall temperature boundary conditions, three Reynolds 

numbers were studied (0; 1000; 6291). No impact is seen on the temperature distribution at Re = 1000. 

However, when Reynolds number is increased to 6291, the average temperature decayed faster improving the 
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cooling process as shown in Figure 11. 

 

 

 

 

 

 

 

 

Figure 11: Average temperature distribution for different Reynolds numbers 

4. Conclusions 

The study presented in this paper focused on the fluid mechanics and heat transfer from a fluid in a rotating 

container. Analytical and numerical approaches were adopted. The analytical solutions were based on solving 

Navier-Stokes equations together with the specified boundary and initial conditions. ANSYS FLUENT was 

used to solve the problem numerically. A validation problem was initially solved and an excellent agreement 

was obtained between the numerical and analytical solutions. Heat transfer from a rotating cylinder in a fluid. 

This problem compared the analytical results for the flow and heat transfer to the numerical solutions conducted 

in ANSYS FLUENT. A perfect match between the two solutions of the velocity and temperature distributions 

was obtained for constant heat transfer coefficient and constant wall temperature boundary conditions. Heat 

transfer from a fluid in a rotating container was also solved for various thermal boundary conditions. This 

problem focused on the internal flow and thermal solutions inside the rotating container. The velocity 

distribution of a fluid that is rotating in an enclosure under steady state was solved analytically. The explicit 

equation for the temperature distribution under specific boundary conditions was not solved, but a partial 

differential equation was obtained. Numerical simulations were completed to solve the velocity and temperature 

distributions. For constant heat transfer coefficient and constant wall temperature boundary conditions, no major 

impact was found on the average temperature decay with respect to time while rotating the cylinder at different 

angular velocities. 
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