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Abstract 

A new formula is developed to reproduce the shape of energy profiles for aperiodic stable attractors with 

Lyapunov exponents, ±𝑛𝑓  by using the Fractional Fourier Transform (FRFT), .i.e. 

𝜓±𝑛𝑓(±𝜔𝜊𝑡𝑎𝑡𝑡) = �
𝜔0𝑡
√𝜋

�
1
2

2±
𝑛𝑓
2  

 where 𝜋
2

< 𝜔𝜊𝑡 ≤ 2𝜋, 0 ≤ 𝜔𝜊𝑡 ≤
𝜋
2
,  𝜔𝜊 is the initial angular frequency of the of the attractor and tatt , the time 

of flight of the attractor. With 𝜔𝜊𝑡 = 𝜋
2
, the energy profile for periodic unstable attractors at different values of 

Lyapunov exponents ±𝑛𝑓  is obtained, for 𝜋
2

< 𝜔𝜊𝑡 ≤ 2 𝜋 𝑎nd  0 ≤ 𝜔𝜊𝑡 ≤
𝜋
2

  aperiodic stable attraction at 

different values of Lyapunov exponents ±𝑛𝑓 are observed.  The critical analysis about chaos is presented with 

emphasis to time series modeling and simulation. 

------------------------------------------------------------------ 

* Corresponding author.  
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1. Introduction  

Deterministic nonlinear model techniques of complex data series, .i.e., uncorrelated series with a flat Fourier 

Spectrum have received a great deal of attention because it can be used to forecast the evaluation of a chaotic 

system [1]. The dynamic variables are usually unknown in chaotic systems. The cross-correlation function 

between observed and predicted values from nonlinear model techniques such as ARIMA (Auto Regressive 

Integrated Moving Average) provides estimated values of Lyapunov exponents of dynamic variables even for 

sparse time series (containing of the order of 103 data points). When the fit is achieved by using nonlinear 

modeling, we can say it is better than probalistic models provided a deterministic mechanism governs the process 

under study [2,3]. Most of the non-linear modeling techniques follow Non-Bayesian statistics and are grouped in 

to major classes: global and local. The local non-Bayesian statistics has more advantages as compared to global 

non-Bayesian statistics. In the Bayesian approach [4] one assumes that the prior uncertainty about unknown 

parameters which have to be inferred from random data or from a stochastic process, can also be encoded in a 

probability distribution, the so called prior. The problem of distinguishing chaos from correlated noise or 

combinations of deterministic and randomness is a more difficult task [5]. Jafri [6] exploited concepts of 

Bayesian and non-Bayesian statistics to prove mathematically that the chaotic time series is deterministic. She 

assumed that the optimum metric (used as tool to distinguish chaos from correlated noise) arises from a metric 

tensor whose components are 

                                                   𝛿𝑖𝑗 = 𝜕𝑖𝑗𝑒2𝑖𝑐                                                                     (1)   

where 𝛿𝑖𝑗  is the kronecker delta function and i  and j run from  i  to 𝑑   (embedding dimension on the 

prediction interval) for input-output data pairs.  If the parameter  𝑐 in equation (1) is varied to minimize the 

root mean square error of the forecast, then there is a single global minimum corresponding to a value of c closed 

to the most negative Lyapunov exponent of the dynamics.  Chaos is having an impact on diverse discipline of 

knowledge including physics, biology, chemistry, economics and medicine [7,12]. The chaos may behave almost 

linearly in some part of phase space and highly non-linearly in other parts. Lorenz and Rossele [13,14], identified 

non-stable chaos approximately in to different (chaotic and non-chaotic) nonlinear dynamical system with their 

attractors. But, the recognition of attractors in a chaotic system is indeed difficult. Jafri [15,16,21],  identified an 

aperiodic stable chaos with an attractor in Mackey- Glass simulation on hourly wind data and indeed followed a 

free fuzzy logic (FFL) design for prediction. The stable chaotic attractors do not influence the time series 

prediction. Jafri [16, 21], also studied the rule based on fuzzy logic time series prediction, feed forward back 

propagation neural networks (FFBPNN) and artificial neuro fuzzy information system (ANFIS). Her ARIMA and 

SARIMA (seasonal auto regressive integrated moving average) modeling techniques and statistical tests [16, 21], 

unraveled many hidden information with particular emphasis to aperiodic stable chaotic attractors. Lalarukh and 

Jafri [17] an ARMA process on hourly global radiation data, performed stochastic modeling through MTM 

(Markov Transition Matrix) and generated synthetic sequences of hourly global solar radiation. They found MTM 

approached relatively better as a simulator compared to ARMA (auto regressive moving average). But, their 
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analysis for ARMA process to simulate and forecast hourly averaged wind speed yielded good results [18]. We 

observed with critical analysis   [1,4,6,14], [18-20] and with experimental data modeling and simulation [15,18, 

21] that the aperiodic attractors (usually with sparse time delays) produced stable chaos whereas the periodic 

attractors the unstable chaos in any nonlinear dynamical systems. Jafri [22] suggested methods for Kolmogorov-

Sinai disorder in terms of “point stochastic process” and found that this stochastic process can be measured with a 

positive Lyapunov exponent.  The point stochastic process deals with discrete, independent and identically 

distributed random data. The non-stationary stochastic process other than point stochastic process in dynamical 

systems depend on   negative Lyapunov   exponents. The positive Lyapunov exponents are preferably found in 

point stochastic processes [2,3,23,24] where disorder introduces chaos in dynamical systems. Such chaotic 

dynamical system have been studied by real valued tine series for random process [6,15,18, 21,22,17,18],  Jafri   

[24] also studied disorder in a stochastic system in the form of Fisher in- formation matrix in probability function, 

using the partition in the family of random variables for their corresponding degree of randomness for one-step 

prediction in time series, as a consequence of which, we obtained the disjoint sets of random variables. There is a 

literal difference between fractional exponents of Heaviside step function and the Lyapunove  exponents.   The 

Lyapunov exponents define attractors both in arbitrary positive and negative directions( hence positive and 

negative Lyapunov exponents) while the fractional exponents of exponential function in the denominator for the 

Heaviside step function show fragmented wavelet or wave fronts ( piecewise step function) and do not represent 

attractors. With this limitation, the Fourier Transform is changed in to Laplace transform. Using the generalized 

definitions of Heaviside step function. By Bracewell [25], we observe that 𝐻(𝑥) changes between 1 and 1 2⁄  

for 𝑥 ≥ 0 and changes between 0 and 1 2⁄  for 𝑥 ≤ 0. 

Few of the expressions   of the Heaviside step function [25] are written to reflect our conjectures true in the above 

paragraph. 

𝐻𝑛(𝑥) = lim
𝑡→0

�
1
2
 𝑒𝑥 𝑡⁄ ,           if  𝑥 ≤ 0

1 − 1
2
 𝑒−𝑥 𝑡⁄ ,  if  𝑥 ≥ 0

                                                         (2) 

 where 𝑥 𝑡⁄  is a fractional exponent. The aperiodic stable chaos differs from periodic unstable chaos [20].The 

unstable periodic chaos [13], [14], [20] is associated with multiple iterations and for each iterations, periodicity is 

maintained whereas the stable aperiodic chaos   [15] follow a singlet iteration (closed   loop). 

We shall consider the time -frequency representation of Fractional Fourier Transform (FRFT), [26]. Such as the 

Wigner distribution (WD), Wiener Space (WS), the ambiguity function, the short time Fourier transform (STFT) 

and the Spectrograms used in speech processing, radar, image rotations, confocal microscopy, etc. with rotation 

vector α to define the aperiodic stable chaos with Lyapunov exponents in time series.  

2. Results and Discussions   

Almeida [26] define the kernel of FRFT in time frequency plane, .i.e.,  
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𝐾𝛼(𝑡,𝑢) =

⎩
⎪
⎨

⎪
⎧�1−𝑗 cot 𝛼

2𝜋
𝑒𝑗

𝑡2+𝑢2
2 cot 𝛼−𝑗𝑢𝑡 csc 𝛼                                      if    𝛼 ≠ 𝜋   

𝛿(𝑡 − 𝑢)                                                                        if 𝛼 = 2𝑛𝜋    
𝛿(𝑡 + 𝑢)                                                                if  𝛼 = (2𝑛 − 1)𝜋

                    

                        (3) 

where 𝑛 is an integer. With 𝛼 = 𝜋
2
, the kernel in eq (3) coincides with the kernel of the Fourier transform (FT). 

Almeida [26] redefined the FRFT of a function𝑥(𝑡), with an angle 𝛼, which is define in eq (4) 

ℱ𝛼[𝑥(𝑡)] = 𝑋𝛼(𝑢) = � 𝑥(𝑡)
∞

−∞

𝐾𝛼(𝑡,𝑢)𝑑𝑡 

=

⎩
⎨

⎧�1−𝑗 cot 𝛼
2𝜋

𝑒𝑗
𝑢2
2 cot 𝛼 ∫ 𝑥(𝑡)𝑒𝑗

𝑡2
2 cot 𝛼−𝑗𝑢𝑡 csc 𝛼𝑑𝑡  𝑖𝑓 𝛼   𝑖𝑠 𝑛𝑜𝑡 𝑎 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒 𝑜𝑓 𝜋  ∞

−∞

𝑥(𝑡)                                                                            𝑖𝑓 𝛼   𝑖𝑠 𝑛𝑜𝑡 𝑎 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒 𝑜𝑓 2𝜋
𝑥(−𝑡)                                                                    𝑖𝑓 𝛼 + 𝜋   𝑖𝑠 𝑛𝑜𝑡 𝑎 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒 𝑜𝑓 2𝜋

            (4) 

Where 𝑢 ≡ 𝜔 (the angular frequency). We assume FRFT equivalent to    𝐻𝑛𝑓(𝑥)𝑒𝑥𝑝 �− 𝑥2

2
�   and time periodic 

signal 𝑥 = 𝐴 sin𝜔𝜊   as Gaussian and exponentially correlated. A is real constant in 𝑥(𝑡) while 𝐻𝑛𝑓(𝑥)  is a 

Hermite polynomial for 𝑛𝑓 exponents (usually termed as Lyapunov exponents). The exponent of 𝑋𝛼(𝑢 ≡ 𝜔) in 

eq (4) is   𝛼. We assume the exponent 𝛼  of    𝑋𝛼(𝑢) to become   Lyapunov exponents     

               𝑋𝛼(𝑢 ≡ 𝜔) ~𝐻𝑛𝑓(𝑥)exp (−𝑥2

2
)       ‘                                                                       (5) 

where 𝛼 = 𝑎 𝜋
2
. Using our recent results on how fractional charge on an electron in the momentum space is  

 quantized?  [27], we find     

     𝐻𝑛𝑓(𝜉) = 2𝑛𝑓                                                                                   (6) 

Where 𝐻𝑛𝑓(𝜉)  are polynomials with  𝑛𝑓, Lyaponov exponent of 2. Eq (6) is consistent with the following 

definition of Hermite polynomials: 

       𝐻𝑛𝑓(𝜉) = (−1)𝑛𝑓𝑒𝜉2 𝑑𝑛𝑓

𝑑𝜉𝑛𝑓
𝑒−𝜉2                                                                       (7) 

       𝐻𝑛𝑓(𝜉) = (−1)𝑛𝑓𝑒𝜉2 �𝜉 − 𝑑
𝑑𝜉
�
𝑛𝑓
𝑒−𝜉2                                                           (8) 

Eqs (7) and (8) show fractional exponents of 𝑑
𝑑𝜉

 and �𝜉 − 𝑑
𝑑𝜉
�. The fractional exponents, 𝑛𝑓 can be envisaged  
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with Lyapunov exponents for attractors. The Lyaponov exponents are both positive and negative fractional  

exponents. Hence, eq(6) is modified as   

                                                     𝐻𝑛𝑓(𝜉) = 2±𝑛𝑓                                                                  (9) 

With the Hermite generating function, 

                            𝐺(𝜉, 𝑠) = 𝑒−𝑠2+2𝑠𝜉 ∑
𝐻𝑛𝑓+1(𝜉)𝑠𝑛

𝑛!
∞
𝑛=0                                                          (10) 

and for 𝑛 = 0, we can prove that the Hermite polynomials satisfy the recursion relations: 

                                        �
𝐻𝑛𝑓+1(𝜉) − 2𝜉𝐻𝑛𝑓 + 𝐻𝑛𝑓−1(𝜉) = 0

𝑑
𝑑𝜉
𝐻𝑛𝑓(𝜉) = 2𝑛𝑓𝐻𝑛𝑓−1(𝜉)                                         (11)                                    

Eq(10) shows that if the function 𝑒−𝑠2+2𝑠𝜉  is expanded in a power series in 𝑠, the coefficients of successive  

powers of  𝑠 are just 1
𝑛!

 times the  Hermite polynomials, 𝐻𝑛𝑓.  

Using eq(11) for each of the fractional exponents,𝑛𝑓 on 𝜆𝑓 = 2𝑛𝑓+1 for  𝐸𝑛𝑓 = �𝑛𝑓 + 1
2�ℏ𝜔, there is  

only one physically acceptable solution for energy profile of the attractor  

      𝜓𝑛𝑓(𝜉) = 𝑁𝑛𝑓𝑒
−𝛼2𝜉

2
2 𝐻𝑛𝑓(𝜉)                                                                           (12) 

where 𝜉 ≡ 𝑥(𝑡)  and  𝑠 ≡ 𝜔  this implies that 𝑡~𝛼𝜉. Considering the Hermite generating function eq(10) and 

equating the t coefficient of equal parts of 𝑠 ≡ 𝜔 and 𝑡~𝛼𝜉 , the normalized eigen functions for Lyaponov 

exponents are given by  

𝜓𝑛𝑓�𝑥(𝑡)� = � 𝛼

√𝜋2
𝑛𝑓𝑛!

�
1
2 𝑒−

𝛼2𝑥2(𝑡)
2 𝐻𝑛𝑓(𝛼𝜉)                                                 (13) 

For Lyaponov exponents , ±𝑛𝑓 , 𝛼 = 𝜔𝜊𝑡 , 𝑛! = 0! = 1 and  𝑥(𝑡) = 𝐴 sin𝜔𝜊𝑡   as Gaussian, using eq(9) in 

eq(13). Eq (13) is modified as  

𝜓𝑛𝑓(𝐴 sin𝜔𝜊𝑡  ) = � 𝜔𝜊𝑡

√𝜋2
±𝑛𝑓�

1
2 𝑒−

𝛼2(𝐴sin𝜔𝜊𝑡)2
2 × 2±𝑛𝑓 = � 𝜔𝜊𝑡

√𝜋2
±𝑛𝑓�

1
2 2

±𝑛𝑓
2 𝑒−𝛼

2�𝐴sin𝜔𝜊𝑡
√2

�
2

    (14) 

the term       𝑒−
𝛼2(𝐴sin𝜔𝜊𝑡)2

2 ~𝑒−�
𝜔𝜊𝑡 𝐴sin𝜔𝜊𝑡

√2
�
2

   is a convergent series and tends to unity in eq (14). With 

sin𝜔𝜊𝑡~𝜔𝜊𝑡 = 𝛼 , eq (14) becomes                               
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 𝜓𝑛𝑓(𝜔𝜊𝑡) = �𝜔𝜊𝑡
√𝜋
�
1
2 2

±𝑛𝑓
2                                                                         (15) 

In a time series following aperiodic stable chaos (stationary stochastic process), the coefficient 𝐴 of sin𝜔𝜊𝑡 is a 

real constant for an attractor with frequency𝜔𝜊. At any time in a time series in the plane (𝑡,𝜔) [Wiener space], 

.i.e., 𝑡 = 𝑡𝑎𝑡𝑡 (time of flight for an attractor), a phase change of  𝜔𝜊𝑡𝑎𝑡𝑡 will cause a change in energy profile 

and hence an aperiodic stable chaotic attractors will be produced on a time series. The coefficient 𝐴, being a real 

constant, can be quantized with simulation. Equation (15) can be modified as  

 𝜓±𝑛𝑓(±𝜔𝜊𝑡𝑎𝑡𝑡) = �𝜔𝜊𝑡
√𝜋
�
1
2 2

±𝑛𝑓
2                                                                     (16) 

         where 𝜋
2

< 𝜔𝜊𝑡 ≤ 2𝜋  and  0 ≤ 𝜔𝜊𝑡 <  𝜋
2
 ,  .i.e., 𝜔𝜊𝑡 = 𝛼 ≠ 𝜋

2
 

Eq(16) represents shape of profile for aperiodic stable attractors with Lyapunov exponents, ±𝑛𝑓. The periodic 

unstable attractors at 𝛼 = 𝜔𝜊𝑡 = 𝜋
2
 will be produced following the FT. Eq (16) obeys WD and WS in (𝑡,𝜔) 

plane. 

All attractors whether periodic or aperiodic are, in fact, the manifestation of Lyaponov exponents. 

3. Conclusion 

The shape of energy profile for aperiodic stable attractors with Lyaponov exponents ±𝑛𝑓 is determined by using 

fractional Fourier transform. The formula aperiodic stable attractors eq (16) is established. With𝜔𝜊𝑡 = 𝜋
2
, it is 

found that the enegy profile exists for periodic unstable attractors at different values of Lyaponov exponents, 

𝑛𝑓.Critical analysis about chaos is revisited with emphasis on time series modeling. 
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