On Chromatic Number and Edge-Chromatic Number of the Ottomar Graph

Mark Caay ${ }^{\text {a }}$, Esperanza Arugay ${ }^{\text {b }}$
${ }^{a}$ Convergys Philippines, Apas, Cebu City, 6000 , Philippines
${ }^{b}$ Department of Mathematics, College of Science and Mathematics, Mindanao State University - Iligan Institute of Technology, Tibanga, Iligan City, 9200, Philippines
${ }^{a}$ Email: markycaay126@yahoo.com
${ }^{b}$ Email: adamandeba@yahoo.com

Abstract

The path graph P_{n}, consists of the vertex set $V=\{1,2, \ldots, n\}$ and the edge set $E=\{\{1,2\},\{2,3\}, \ldots,\{n-1, n\}\}$. The cycle graph C_{n}, is the path graph, P_{n} with an additional edge $\{1, \mathrm{n}\}$. Define the Ottomar Graph, denoted by $\mathrm{O}_{\mathrm{n}, \mathrm{m}}$, to be the graph $\mathrm{C}_{\mathrm{n}}, \mathrm{n} \in \mathbb{Z}^{+}, \mathrm{n} \geq 3$, with a vertex connected by a path P_{2} to a vertex of $\mathrm{C}_{\mathrm{m}}, \mathrm{m} \in \mathbb{Z}^{+}, \mathrm{n} \geq 3$. C_{n} is called the heart while C_{m} is called a foot (feet for plural). Note that there are n copies of C_{m}. The chromatic number of a graph G , denoted by $\chi(\mathrm{G})$, is the minimum number of colors the vertices of G maybe colored such that any two adjacent vertices have different colors. The edge-chromatic number of a graph G , denoted by $\chi_{e}(G)$, is the minimum number of colors the edges of G maybe colored such that any two incident edges have different colors. The chromatic number and the edge-chromatic number of the ottomar graph are determined. When will the two invariants be equal or when will they be unequal? When the connecting path P_{k} has order greater than 2 , what happens to the value of $\chi(\mathrm{G})$ and $\chi_{e}(\mathrm{G})$? Also in the paper, the other coloring invariants are compared and investigated with chromatic number and edge-chromatic number.

Keywords: path; cycle; chromatic number; edge-chromatic number; ottomar graph; generalized ottomar graph.

1. Introduction

A pair $G=(V, E)$ with $E \subseteq E(V)$ is called a graph (on V). The elements of V are the vertices of G, and those of E the edges of G.

The vertex set of a graph G is denoted by V_{G} and its edge set by E_{G}. Therefore $G=\left(V_{G}, E_{G}\right)$. The path graph P_{n}, consists of the vertex set $V=\{1,2, \ldots, n\}$ and the edge set $E=\{\{1,2\},\{2,3\}, \ldots,\{n-1, n\}\}$. The cycle graph C_{n}, is the path graph, P_{n} with an additional edge $\{1, n\}$. The chromatic number of a graph G, denoted by $\chi(G)$, is the minimum number of colors the vertices of G maybe colored such that any two adjacent vertices have different colors. The edge-chromatic number of a graph G, denoted by $\chi_{e}(G)$, is the minimum number of colors the edges of G maybe colored such that any two incident edges have different colors.

Known Result 1 [2] If C_{n} is a cycle of order n, then

$$
\chi\left(C_{n}\right)= \begin{cases}2 & \text { if } n \text { is even } \tag{1.1}\\ 3 & \text { if } n \text { is odd }\end{cases}
$$

and,

$$
\chi_{e}\left(C_{n}\right)= \begin{cases}2 & \text { if } n \text { is even } \tag{1.2}\\ 3 & \text { if } n \text { is odd }\end{cases}
$$

Define the Ottomar Graph, denoted by $O_{n, m}$, to be the graph $C_{n}, n \epsilon \mathbb{Z}^{+}, n \geq 3$, with a vertex connected by a path P_{2} to a vertex of $C_{m}, m \in \mathbb{Z}^{+}, n \geq 3 . C_{n}$ is called the heart while C_{m} is called a foot (feet for plural). Note that there are n copies of C_{m}.

Figure 1: Ottomar Graph: $O_{3,4}$
2. Identities of Chromatic Number and Edge-Chromatic Number of Ottomar Graph

Theorem 2.1

For all integers $m, n \geq 3, \chi\left(O_{n, m}\right)=3$, if:

- \quad Case 1: m, n are both odd
- \quad Case 2: m is odd, n is even
- \quad Case 3: m is even, n is odd
and
- $\quad \chi\left(O_{n, m}\right)=2$ if m, n are even.

Proof:

- \quad Case $1: \underline{m}$ and n are both odd

If m, n are odd, then by equation (1.1), $\chi\left(C_{m}\right)=\chi\left(C_{m}\right)=3$, thus $\chi\left(O_{n, m}\right) \neq 2$. Suppose the vertices of C_{m} and C_{n} are colored with the same set of different colors say a_{1}, a_{2}, a_{3}. Then the path P_{2} is attached to a vertex colored say $a_{i}, i=1,2,3$ of C_{m} and the other end vertex is attached to a vertex colored say $a_{j}, j=1,2,3$ of C_{n}, where $a_{i} \neq a_{j}$. Hence, three is the minimum number of colors to color the vertices of $O_{n, m}$, where m, n are both odd. Consequently, $\chi\left(O_{n, m}\right)=3$.

- \quad Case 2: $\underline{m \text { is odd, } n \text { is even }}$

If m is odd and n is even, then by equation (1.1), $\chi\left(C_{m}\right)=3$ and $\chi\left(C_{n}\right)=2$, so $\chi\left(O_{n, m}\right) \neq 2$. Suppose that the vertices of C_{n} are colored with two of the colors that also color the vertices of C_{m}, say a_{1}, a_{2} for C_{n} and a_{1}, a_{2}, a_{3} for C_{m}. Then a path P_{2} is attached to vertex colored say $a_{i}, i=1,2,3$ of C_{m} and other end vertex is attached to a vertex colored $a_{j}, j=1,2$ of C_{n}, where $a_{i} \neq a_{j}$. This means that the minimum number of colors to color the vertices of $O_{n, m}$, where n is even and m is odd is three. Thus, $\chi\left(O_{n, m}\right)=3$.

- \quad Case 3: \underline{m} is even, n is odd

Proof of this case is similar to case 2.

- \quad Case 4: $\underline{m, n}$ are both even

If m, n are even then by equation (1.1), $\chi\left(C_{m}\right)=\chi\left(C_{n}\right)=2$. Suppose the vertices of C_{m} and C_{n} are colored with the same set of different colors, say a_{1}, a_{2}. Then a path P_{2} is attached to a vertex colored say $a_{i}, i=1,2$ of
C_{m} and the other end vertex is attached to a vertex colored say $a_{j}, j=1,2$ of C_{n}, where $a_{i} \neq a_{j}$. Hence, two is the minimum number of colors to color vertices of $O_{n, m}$, where, n, m are both even. Consequently, $\chi\left(O_{n, m}\right)=$ 2.

Theorem 2.2 For all integers $m, n, m, n \geq 3, \chi_{e}\left(O_{n, m}\right)=3$.

Proof:

To prove this theorem, we consider the following cases:

- \quad Case $1: \underline{m}, n$ are both odd

If m, n are both odd, then by equation (1.2), $\chi_{e}\left(C_{m}\right)=\chi_{e}\left(C_{n}\right)=3$. Thus, $\chi_{e}\left(O_{n, m}\right) \neq 2$ since there exist three incident edges. Suppose the edges of C_{m} and C_{n} are colored with the same set of different colors, say b_{i}, b_{j}, b_{k}. Then a path P_{2} connecting C_{m} and C_{n} must have an edge colored with one of the colors b_{1}, b_{2}, b_{3}, say $b_{i}, i=1,2,3$, where b_{i} is incident to edges colored b_{j} and b_{k} of C_{m} and is also incident to edges colored b_{j} and b_{k} of $C_{n}, b_{i} \neq b_{j} \neq b_{k}$. Hence, three is the minimum number of colors to color the edges of $O_{n, m}$, where n, m are both odd. Consequently, $\chi_{e}\left(O_{n, m}\right)=3$.

- \quad Case 2: m, n are both even

If m, n are both even, then by equation (1.2), $\chi_{e}\left(C_{m}\right)=\chi_{e}\left(C_{n}\right)=2$. Thus, $\chi_{e}\left(O_{n, m}\right) \neq 2$ since there exist three incident edges. Without a loss of generality, suppose the edges of C_{m} and C_{n} are colored with same set of different colors b_{1}, b_{2}. Then a path P_{2} connecting C_{m} and C_{n} where its edge is incident to colors b_{1}, b_{2} edges of C_{m} and C_{n}, must have an edge colored with b_{3} such that $b_{1} \neq b_{2} \neq b_{3}$. Hence, three is the minimum number of colors to color the edges of $O_{n, m}$, where m, n are both even. Consequently, $\chi_{e}\left(O_{n, m}\right)=3$.

- \quad Case 3: \underline{m} is odd, n is even

If m is odd, n is even, then by equation (1.2), $\chi_{e}\left(C_{m}\right)=3$ and $\chi_{e}\left(C_{n}\right)=2$. Thus $\chi_{e}\left(O_{n, m}\right) \neq 2$. Without a loss of generalization, suppose that the edges of C_{n} are colored with two of the colors that also color the edges of C_{m}, say b_{1}, b_{2} colors of C_{n} and b_{1}, b_{2}, b_{3} colors of C_{m}. Then a path P_{2} connecting C_{m} and C_{n} must have an edge colored with b_{3} and must also be incident to edges colored b_{1} and b_{2} of C_{m} and must also be incident to edges colored b_{1} and b_{2} of C_{n}. Hence, three is the minimum number of colors to color the edges of $O_{n, m}$, where m is odd, n is even. Consequently, $\chi_{e}\left(O_{n, m}\right)=3$.

- \quad Case 4: \underline{m} is even, n is odd

If m is even, n is odd, then the proof of this case is similar to case 3 .

Corollary 2.1

For all integers $m, n \geq 3$

$$
\chi\left(O_{n, m}\right) \leq \chi_{e}\left(O_{n, m}\right)
$$

Proof:

Note that for the cases where m, n are both odd, m is odd, n is even, and m is even, n is odd, by Theorem 2.1, $\chi\left(O_{n, m}\right)=3$ and by Theorem 2.2, $\chi_{e}\left(O_{n, m}\right)=3$. Thus, $\chi\left(O_{n, m}\right) \leq \chi_{e}\left(O_{n, m}\right)$. Similarly, for cases where m, n are both even, by Theorem 2.1, $\chi\left(O_{n, m}\right)=2$ and by Theorem 2.2, $\chi_{e}\left(O_{n, m}\right)=3$. Thus, $\chi\left(O_{n, m}\right) \leq \chi_{e}\left(O_{n, m}\right)$. Therefore, in all cases, $\chi\left(O_{n, m}\right) \leq \chi_{e}\left(O_{n, m}\right)$.

Remark 2.1 For all integers $k \geq 3, \chi\left(P_{k}\right)=\chi_{e}\left(P_{k}\right)=2$.

3. Generalized Ottomar Graph

Define the Generalized Ottomar Graph, $O^{k}{ }_{n, m}$, is graph $C_{n}, n \in \mathbb{Z}^{+}, n \geq 3$, with each vertex connected by a path $P_{k}, k \in \mathbb{Z}^{+}, k \geq 3$ to a vertex of $C_{m}, m \in \mathbb{Z}^{+}, m \geq 3$. C_{n} is called a heart while C_{m} is called a foot (feet for plural). Note that there are n copies of C_{m}.

Theorem 3.1 For all integers $k=3,4, \chi\left(0^{k}{ }_{n, m}\right)=3 i f$,

- $\quad m, n$ are both odd
- $\quad m$ is odd, n is even
- $\quad m$ is even, n is odd
and

$$
\chi\left(O_{n, m}^{k}\right)=2, \text { if } m, n \text { are both even. }
$$

Proof:

- \quad Case 1: m, n are both odd

If m, n are both odd, then by equation (1.1), $\chi\left(C_{m}\right)=\chi\left(C_{n}\right)=3$. Thus, $\chi\left(O^{k}{ }_{n, m}\right) \geq 3$. Suppose the vertices of C_{m} and C_{n} are colored with the same set of different colors say a_{1}, a_{2}, a_{3}. Consider the following subcases where $k=3$ (odd) and $k=4$ (even):

- \quad subcase 1.1: If $k=3$

Then a path P_{3} with vertices colored with two from the same set of different colors a_{1}, a_{2}, a_{3}, is attached to a
vertex colored say $a_{i}, i=1,2,3$ of C_{m} and the other end vertex is also connected to a_{i} of C_{n}, such that the second (middle) vertex of P_{3} is $a_{j}, j=1,2,3$, where $a_{i} \neq a_{j}$. Thus three is the minimum number of colors to color the vertices of $O^{3}{ }_{n, m}$, where m, n are both odd. Consequently, $\chi\left(O^{3}{ }_{n, m}\right)=3$.

- \quad subcase 1.2: If $k=4$

Note that by Remark 2.1, $\chi\left(P_{4}\right)=2$. Suppose further that P_{4} is colored with two from the same set of different colors that color the vertices of C_{m} and C_{n}, say $a_{i}, a_{j}, i, j=1,2,3$. Then, the first vertex of P_{4} is colored a_{i} of C_{m} and the last vertex of P_{4}, colored a_{j} is attached to a_{j} of C_{n}. The other vertices of P_{4} are colored a_{i}, a_{j} such that no two adjacent vertices have the same color. Thus, three is the minimum number of colors to color the vertices of $O^{4}{ }_{n, m}$, where m, n are both odd. Consequently, $\chi\left(O^{4}{ }_{n, m}\right)=3$.

- \quad Case 2: m is odd, n is even

If m is odd, n is even, then by equation (1.1), $\chi\left(C_{m}\right)=3$ and $\chi\left(C_{n}\right)=2$. Thus, $\chi\left(O^{k}{ }_{n, m}\right) \geq 3$. Suppose that the vertices of C_{n} are colored with two of the different colors that also color the vertices of C_{m}, say a_{i}, a_{2} colors for C_{n} and a_{1}, a_{2}, a_{3} colors for C_{m}. Consider the following subcases where $k=3$ (odd) and $k=4$ (even):

- \quad subcase 2.1: If $k=3$

Then a path P_{3} is attached to vertex colored say $a_{i}, i=1,2,3$ of C_{m} and the other end vertex is also connected to a vertex colored a_{i} of C_{n}, such that the second (middle) vertex of P_{3} is $a_{j}, j=1,2,3$, where $a_{i} \neq a_{j}$. Thus, three is the minimum number of colors to color the vertices of $O^{3}{ }_{n, m}$ where m is odd and n is even. Consequently, $\chi\left(O^{3}{ }_{n, m}\right)=3$.

- \quad subcase 2.2: If $k=4$

Note that by Remark 2.1, $\chi\left(P_{4}\right)=2$. Suppose further that P_{4} is colored with two from the same set of different colors that color the vertices of C_{m} and C_{n}, say a_{1}, a_{2}. Then, the first vertex of P_{4} is attached to a vertex colored $a_{i}, i=1,2$ of C_{m} and is adjacent to a vertex colored $a_{j}, j=1,2$, which is the second vertex of P_{4}, and the last vertex is then connected to a vertex colored $a_{j}, j=1,2$ of C_{n}, where $a_{i} \neq a_{j}$. Note that the vertices of C_{m} are colored $\left\{a_{1}, a_{2}, a_{3}\right\}$. Thus, three is the minimum number of colors to color the vertices of $O^{4}{ }_{n, m}$, where m is odd, n is even. Consequently, $\chi\left(O_{n, m}^{4}\right)=3$.

- \quad Case 3: m is even, n is odd

If m is even, n is odd, then the proof of this case is similar to case 2 .

- \quad Case 4: m, n are both even

If m, n are both even, then by equation (1.1), $\chi\left(C_{m}\right)=\chi\left(C_{n}\right)=2$. Suppose the vertices of C_{m} and C_{n} are
colored with the same set of different colors say a_{1}, a_{2}. Consider the following subcases where $k=3$ (odd) and $k=4$ (even):

- subcase 4.1: If $k=3$

Then a path P_{3} with vertices colored with the same set of different colors a_{1}, a_{2}, is attached to vertex colored say $a_{i}, i=1,2,3$ of C_{m} and the other end vertex is also connected to a vertex colored a_{i} of C_{n}, such that the second (middle) vertex of P_{3} is $a_{j}, j=1,2,3$, where $a_{i} \neq a_{j}$. Thus, two is the minimum number of colors to color the vertices of $O^{3}{ }_{n, m}$ where m is odd and n is even. Consequently, $\chi\left(O_{n, m}^{3}\right)=2$.

- \quad subcase 4.2: If $k=4$

Note that by Remark 2.1, $\chi\left(P_{4}\right)=2$. Suppose further that P_{4} is colored with two from the same set of different colors that color the vertices of C_{m} and C_{n}, say a_{1}, a_{2}. Then, the first vertex of P_{4} is attached to a vertex colored $a_{i}, i=1,2$ of C_{m} and is adjacent to a vertex colored $a_{j}, j=1,2$, which is the second vertex of P_{4}, and the second vertex is adjacent to a vertex colored $a_{i}, i=1,2$, which is the third vertex of P_{4}, and the last vertex is then connected to a vertex colored $a_{j}, j=1,2$ of C_{n}, where $a_{i} \neq a_{j}$. Thus, two is the minimum number of colors to color the vertices of $O^{4}{ }_{n, m}$, where m is odd, n is even. Consequently, $\chi\left(O^{4}{ }_{n, m}\right)=2$.

It is easy to prove that the next corollaries hold. Proofs are similar to Theorem 3.1.

Corollary 3.1

For all integers $k \geq 3, k$ is odd,

$$
\chi\left(O_{n, m}^{k}\right)=3 \quad \text { if: }
$$

- $\quad m, n$ are both odd
- $\quad m$ is odd, n is even
- $\quad m$ is even, n is odd
and

$$
\chi\left(O_{n, m}^{k}\right)=2 \quad \text { if } m, n \text { are both even. }
$$

Corollary 3.2 For all integers $k \geq 2, k$ is even, $\chi\left(O^{k}{ }_{n, m}\right)=2$.

Theorem 3.2 For all integers $m, n \geq 3$ and for integers $k=3,4, \chi_{e}\left(O^{k}{ }_{n, m}\right)=3$.

Proof:

- \quad Case 1: m, n are both odd

If m, n are both odd, then by equation (1.2), $\chi_{e}\left(C_{m}\right)=\chi_{e}\left(C_{n}\right)=3$. Thus, $\chi_{e}\left(O_{n, m}^{k}\right) \geq 3$. Suppose the edges of C_{m} and C_{n} are colored with the same set of different colors, say b_{1}, b_{2}, b_{3}.

- \quad subcase 1.1: If $k=3$

Note that P_{3} has two edges and suppose we color its edges with two from the set of different colors that color the edges of C_{m} and C_{n}, say b_{i}, b_{j}. Then b_{i} color of P_{3} is attached to C_{m} and is incident to edges colored b_{j} and b_{k} of C_{m}, while the other color of the edge of P_{3} say b_{j} is attached to C_{n} and is incident to edges colored b_{i} and b_{k} of C_{n}, where $b_{i} \neq b_{j} \neq b_{k}$. Hence, three is the minimum number of colors that color the edges of $O^{3}{ }_{n, m}$. Consequently, $\chi_{e}\left(O^{3}{ }_{n, m}\right)=3$.

- \quad subcase 2.1: If $k=4$

Note that by Remark 3.1, $\chi_{e}\left(P_{4}\right)=2$ and suppose the edges of P_{4} are colored with two from the same set of different colors that color the edges of C_{m} and C_{n}, say b_{i}, b_{j}. Since P_{4} has three edges, suppose that P_{4} is colored with b_{i} 's and $b_{j}, i=1,2,3, j=1,2,3$ such that b_{j} is the middle edge and the two $b_{i}{ }^{\prime} s$ are first and the last edges. Then, b_{i} of P_{4} is connected to C_{m} and is incident to edges colored b_{j} and b_{k} of C_{m}, while the other b_{i} of C_{n}. Hence, three is the minimum number of colors that color the edges of $O^{4}{ }_{n, m}$. Consequently, $\chi_{e}\left(O^{4}{ }_{n, m}\right)=3$.

- \quad Case 2: m is odd, n is even

If m is odd, n is even, then by equation (1.2), $\chi_{e}\left(C_{m}\right)=3$ and $\chi_{e}\left(C_{n}\right)=2$. Suppose the edges of C_{n} are colored with two from the same set of different colors that color the edges of C_{m}, say b_{1}, b_{2} for C_{n} and b_{1}, b_{2}, b_{3} for C_{m}. By this, the entire proof follows from case 1 .

- \quad Case 3: m is even, n is odd

If m is even, n is odd, then the proof of this case is similar to case 2 .

- \quad Case 4: m, n are both even

If m, n are both even, then by equation (1.2), $\chi_{e}\left(C_{m}\right)=\chi_{e}\left(C_{n}\right)=2$. Suppose the edges of C_{m} are colored by a set of different colors say b_{j}, b_{k} and C_{n} is colored with the set of different colors, say b_{i}, b_{k}, where $i, j, k=$ $1,2,3$ and $b_{i} \neq b_{j} \neq b_{k}$.

- \quad subcase 4.1: If $k=3$

Note that by Remark 2.1, $\chi_{e}\left(P_{3}\right)=2$. Clearly, $\chi_{e}\left(O_{n, m}^{3}\right) \geq 3$ since $O_{n, m}^{3}$ has three edges incident to each other at the endpoints of P_{3}. Then b_{i} color of P_{3} is attached to C_{m} and is incident to edges colored b_{j} and b_{k} of C_{m}, while the other color of the edge of P_{3} say b_{j} is attached to C_{n} and is incident to edges colored b_{i} and b_{k} of C_{n} and is incident to edges colored b_{i} and b_{k} of C_{n}, where $b_{i} \neq b_{j} \neq b_{k}$. Hence, three is the minimum number of colors that color the edges of $O^{3}{ }_{n, m}$. Consequently, $\chi_{e}\left(O^{3}{ }_{n, m}\right)=3$.

- \quad subcase 4.2: If $k=4$

Note that P_{4} has three edges and by Remark 3.1, $\chi_{e}\left(P_{4}\right)=2$. Clearly, $\chi_{e}\left(O^{4}{ }_{n, m}\right) \geq 3$ since $O^{4}{ }_{n, m}$ has three edges incident to each other at the endpoints of P_{k}. Suppose that there are two $b_{i}^{\prime} s, i=1,2,3$ and one $b_{j}, j=$ $1,2,3$ is the color of the middle edge, while the two $b_{i}^{\prime} s, i=1,2,3$ are the colors of the first and the last edges. Then the first b_{i} color is attached to C_{m} and is incident to edges colored b_{j} and b_{k} colors C_{m}, while the other b_{i} is connected to C_{n} and is also incident to edges b_{j} and b_{k} colors of C_{n}. Hence, three is the minimum number of colors that color the edges of $O^{4}{ }_{n, m}$. Consequently, $\chi_{e}\left(O^{4}{ }_{n, m}\right)=3$.

Therefore for any cases, the proof follows.

Similar arguments will hold for the last Theorem.

Theorem 3.3 For all integers $m, n \geq 3$, and for all integers $\mathrm{k} \geq 3$, $\chi_{\mathrm{e}}\left(\mathrm{o}^{\mathrm{k}}{ }_{\mathrm{n}, \mathrm{m}}\right)=3$.

Corollary 3.3 For all integers $m, n \geq 3$ and for any integers $k \geq 3$,

$$
\chi\left(O_{n, m}^{k}\right) \leq \chi_{e}\left(O_{n, m}^{k}\right) \leq 3
$$

Proof:

Note that for cases where m, n are both odd, m is odd, n is even and m is even, n is odd, by Theorem 3.1, $\chi\left(O_{n, m}^{k}\right)=3$ and by Theorem 3.2, $\chi_{e}\left(O_{n, m}^{k}\right)=3$. Thus, $\chi\left(O_{n, m}^{k}\right) \leq \chi_{e}\left(O_{n, m}^{k}\right)$. Similarly, for cases where m, n are both even, by Theorem 3.1, $\chi\left(O_{n, m}^{k}\right)=2$ and by Theorem 3.2, $\chi_{e}\left(O^{k}{ }_{n, m}\right)=3$. Thus, $\chi\left(O_{n, m}^{k}\right) \leq \chi_{e}\left(O_{n, m}^{k}\right)$. Therefore, in all cases, $\chi\left(O^{k}{ }_{n, m}\right) \leq \chi_{e}\left(O_{n, m}^{k}\right)$.

Acknowledgements

The authors would like to thank the referee for the helpful suggestions and the members of ASRJETS. Special thanks to authors' families and friends.

References

[1]. E. Arugay. "Path Chromatic Number of a Graph." In Dissertation Conference. Ateneo de Manila University, 1990.
[2]. R. Balakrishnan and K. Ranganathan. A Textbook of Graph Theory, ${ }^{\text {nd }}$ Ed., Springer, 2012.
[3]. T. Harju. Lecture Notes on GRAPH THEORY. Department of Mathematics, University of Turku, FIN-20014, Turku, Finland, 2012.

