American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS)

ISSN (Print) 2313-4410, ISSN (Online) 2313-4402

© Global Society of Scientific Research and Researchers

ttp://asrjetsjournal.org

On Chromatic Number and Edge-Chromatic Number of the Ottomar Graph

Mark Caay^a*, Esperanza Arugay^b

^a Convergys Philippines, Apas, Cebu City, 6000, Philippines

^b Department of Mathematics, College of Science and Mathematics, Mindanao State University – Iligan Institute of Technology, Tibanga, Iligan City, 9200, Philippines ^aEmail: markycaay126@yahoo.com

^bEmail: adamandeba@yahoo.com

Abstract

The path graph P_n , consists of the vertex set $V = \{1, 2, ..., n\}$ and the edge set $E = \{\{1, 2\}, \{2, 3\}, ..., \{n - 1, n\}\}$. The cycle graph C_n , is the path graph, P_n with an additional edge $\{1, n\}$. Define the Ottomar Graph, denoted by $O_{n,m}$, to be the graph C_n , $n \in \mathbb{Z}^+$, $n \ge 3$, with a vertex connected by a path P_2 to a vertex of C_m , $m \in \mathbb{Z}^+$, $n \ge 3$. C_n is called the heart while C_m is called a foot (feet for plural). Note that there are n copies of C_m . The chromatic number of a graph G, denoted by $\chi(G)$, is the minimum number of colors the vertices of G maybe colored such that any two adjacent vertices have different colors. The edge-chromatic number of a graph G, denoted by $\chi_e(G)$, is the minimum number of G maybe colored such that any two incident edges have different colors. The chromatic number of the ottomar graph are determined. When will the two invariants be equal or when will they be unequal? When the connecting path P_k has order greater than 2, what happens to the value of $\chi(G)$ and $\chi_e(G)$? Also in the paper, the other coloring invariants are compared and investigated with chromatic number and edge-chromatic number.

Keywords: path; cycle; chromatic number; edge-chromatic number; ottomar graph; generalized ottomar graph.

1. Introduction

A pair G = (V, E) with $E \subseteq E(V)$ is called a graph (on V). The elements of V are the vertices of G, and those of E the edges of G.

^{*}Corresponding author

The vertex set of a graph *G* is denoted by V_G and its edge set by E_G . Therefore $G = (V_G, E_G)$. The *path graph* P_n , consists of the vertex set $V = \{1, 2, ..., n\}$ and the edge set $E = \{\{1, 2\}, \{2, 3\}, ..., \{n - 1, n\}\}$. The cycle graph C_n , is the path graph, P_n with an additional edge $\{1, n\}$. The chromatic number of a graph *G*, denoted by $\chi(G)$, is the minimum number of colors the vertices of *G* maybe colored such that any two adjacent vertices have different colors. The edge-chromatic number of a graph *G*, denoted by $\chi_e(G)$, is the minimum number of colored such that any two incident edges have different colors.

Known Result 1 [2] If C_n is a cycle of order n, then

$$\chi(C_n) = \begin{cases} 2 & \text{if } n \text{ is even} \\ 3 & \text{if } n \text{ is odd} \end{cases}$$
(1.1)

and,

$$\chi_e(C_n) = \begin{cases} 2 & \text{if } n \text{ is even} \\ 3 & \text{if } n \text{ is odd} \end{cases}$$
(1.2)

Define the Ottomar Graph, denoted by $O_{n,m}$, to be the graph C_n , $n \in \mathbb{Z}^+$, $n \ge 3$, with a vertex connected by a path P_2 to a vertex of C_m , $m \in \mathbb{Z}^+$, $n \ge 3$. C_n is called the *heart* while C_m is called a *foot* (*feet* for plural). Note that there are *n* copies of C_m .

Figure 1: Ottomar Graph: $O_{3,4}$

2. Identities of Chromatic Number and Edge-Chromatic Number of Ottomar Graph

Theorem 2.1

For all integers $m, n \ge 3, \chi(O_{n,m}) = 3$, if:

- Case 1: m, n are both odd
- Case 2: m is odd, n is even
- Case 3: m is even, n is odd

and

• $\chi(O_{n,m}) = 2$ if m, n are even.

Proof:

• Case 1: <u>*m* and *n* are both odd</u>

If *m*, *n* are odd, then by equation (1.1), $\chi(C_m) = \chi(C_m) = 3$, thus $\chi(O_{n,m}) \neq 2$. Suppose the vertices of C_m and C_n are colored with the same set of different colors say a_1, a_2, a_3 . Then the path P_2 is attached to a vertex colored say $a_i, i = 1$, 2, 3 of C_m and the other end vertex is attached to a vertex colored say a_j , j = 1,2,3 of C_n , where $a_i \neq a_j$. Hence, three is the minimum number of colors to color the vertices of $O_{n,m}$, where m, n are both odd. Consequently, $\chi(O_{n,m}) = 3$.

• Case 2: <u>m is odd, n is even</u>

If *m* is odd and *n* is even, then by equation (1.1), $\chi(C_m) = 3$ and $\chi(C_n) = 2$, so $\chi(O_{n,m}) \neq 2$. Suppose that the vertices of C_n are colored with two of the colors that also color the vertices of C_m , say a_1, a_2 for C_n and a_1, a_2, a_3 for C_m . Then a path P_2 is attached to vertex colored say $a_i, i = 1,2,3$ of C_m and other end vertex is attached to a vertex colored $a_j, j = 1,2$ of C_n , where $a_i \neq a_j$. This means that the minimum number of colors to color the vertices of $O_{n,m}$, where *n* is even and *m* is odd is three. Thus, $\chi(O_{n,m}) = 3$.

• Case 3: <u>m is even, n is odd</u>

Proof of this case is similar to case 2.

• Case 4: <u>m, n are both even</u>

If *m*, *n* are even then by equation (1.1), $\chi(C_m) = \chi(C_n) = 2$. Suppose the vertices of C_m and C_n are colored with the same set of different colors, say a_1, a_2 . Then a path P_2 is attached to a vertex colored say $a_i, i = 1, 2$ of

 C_m and the other end vertex is attached to a vertex colored say a_j , j = 1,2 of C_n , where $a_i \neq a_j$. Hence, two is the minimum number of colors to color vertices of $O_{n,m}$, where, n, m are both even. Consequently, $\chi(O_{n,m}) = 2$.

Theorem 2.2 For all integers $m, n, m, n \ge 3$, $\chi_e(O_{n,m}) = 3$.

Proof:

To prove this theorem, we consider the following cases:

• Case 1: <u>m, n are both odd</u>

If *m*, *n* are both odd, then by equation (1.2), $\chi_e(C_m) = \chi_e(C_n) = 3$. Thus, $\chi_e(O_{n,m}) \neq 2$ since there exist three incident edges. Suppose the edges of C_m and C_n are colored with the same set of different colors, say b_i, b_j, b_k . Then a path P_2 connecting C_m and C_n must have an edge colored with one of the colors b_1, b_2, b_3 , say $b_i, i = 1,2,3$, where b_i is incident to edges colored b_j and b_k of C_m and is also incident to edges colored b_j and b_k of $C_n, b_i \neq b_j \neq b_k$. Hence, three is the minimum number of colors to color the edges of $O_{n,m}$, where n, m are both odd. Consequently, $\chi_e(O_{n,m}) = 3$.

• <u>Case 2: m, n are both even</u>

If m, n are both even, then by equation (1.2), $\chi_e(C_m) = \chi_e(C_n) = 2$. Thus, $\chi_e(O_{n,m}) \neq 2$ since there exist three incident edges. Without a loss of generality, suppose the edges of C_m and C_n are colored with same set of different colors b_1, b_2 . Then a path P_2 connecting C_m and C_n where its edge is incident to colors b_1, b_2 edges of C_m and C_n , must have an edge colored with b_3 such that $b_1 \neq b_2 \neq b_3$. Hence, three is the minimum number of colors to color the edges of $O_{n,m}$, where m, n are both even. Consequently, $\chi_e(O_{n,m}) = 3$.

• Case 3: <u>m is odd, n is even</u>

If *m* is odd, *n* is even, then by equation (1.2), $\chi_e(C_m) = 3$ and $\chi_e(C_n) = 2$. Thus $\chi_e(O_{n,m}) \neq 2$. Without a loss of generalization, suppose that the edges of C_n are colored with two of the colors that also color the edges of C_m , say b_1, b_2 colors of C_n and b_1, b_2, b_3 colors of C_m . Then a path P_2 connecting C_m and C_n must have an edge colored with b_3 and must also be incident to edges colored b_1 and b_2 of C_m and must also be incident to edges colored b_1 and b_2 of C_n . Hence, three is the minimum number of colors to color the edges of $O_{n,m}$, where *m* is odd, *n* is even. Consequently, $\chi_e(O_{n,m}) = 3$.

• Case 4: <u>m is even, n is odd</u>

If m is even, n is odd, then the proof of this case is similar to case 3.

Corollary 2.1

For all integers $m, n \ge 3$

$$\chi(O_{n,m}) \leq \chi_e(O_{n,m})$$

Proof:

Note that for the cases where m, n are both odd, m is odd, n is even, and m is even, n is odd, by Theorem 2.1, $\chi(O_{n,m}) = 3$ and by Theorem 2.2, $\chi_e(O_{n,m}) = 3$. Thus, $\chi(O_{n,m}) \leq \chi_e(O_{n,m})$. Similarly, for cases where m, nare both even, by Theorem 2.1, $\chi(O_{n,m}) = 2$ and by Theorem 2.2, $\chi_e(O_{n,m}) = 3$. Thus, $\chi(O_{n,m}) \leq \chi_e(O_{n,m})$. Therefore, in all cases, $\chi(O_{n,m}) \leq \chi_e(O_{n,m})$.

Remark 2.1 For all integers $k \ge 3$, $\chi(P_k) = \chi_e(P_k) = 2$.

3. Generalized Ottomar Graph

Define the Generalized Ottomar Graph, $O_{n,m}^k$, is graph $C_n, n \in \mathbb{Z}^+, n \ge 3$, with each vertex connected by a path $P_k, k \in \mathbb{Z}^+, k \ge 3$ to a vertex of $C_m, m \in \mathbb{Z}^+, m \ge 3$. C_n is called a *heart* while C_m is called a *foot* (*feet* for plural). Note that there are *n* copies of C_m .

Theorem 3.1 For all integers $k = 3, 4, \chi(O_{n,m}^k) = 3$ if,

- *m, n are both odd*
- *m is odd, n is even*
- *m is even, n is odd*

and

$$\chi(0^k_{n,m}) = 2$$
, if m, n are both even.

Proof:

• Case 1: *m*, *n* are both odd

If *m*, *n* are both odd, then by equation (1.1), $\chi(C_m) = \chi(C_n) = 3$. Thus, $\chi(O^k_{n,m}) \ge 3$. Suppose the vertices of C_m and C_n are colored with the same set of different colors say a_1, a_2, a_3 . Consider the following subcases where k = 3 (odd) and k = 4 (even):

• <u>subcase 1.1:</u> If k = 3

Then a path P_3 with vertices colored with two from the same set of different colors a_1, a_2, a_3 , is attached to a

vertex colored say a_i , i = 1,2,3 of C_m and the other end vertex is also connected to a_i of C_n , such that the second (middle) vertex of P_3 is a_j , j = 1,2,3, where $a_i \neq a_j$. Thus three is the minimum number of colors to color the vertices of $O_{n,m}^3$, where m, n are both odd. Consequently, $\chi(O_{n,m}^3) = 3$.

• <u>subcase 1.2:</u> If k = 4

Note that by Remark 2.1, $\chi(P_4) = 2$. Suppose further that P_4 is colored with two from the same set of different colors that color the vertices of C_m and C_n , say $a_i, a_j, i, j = 1,2,3$. Then, the first vertex of P_4 is colored a_i of C_m and the last vertex of P_4 , colored a_j is attached to a_j of C_n . The other vertices of P_4 are colored a_i, a_j such that no two adjacent vertices have the same color. Thus, three is the minimum number of colors to color the vertices of $O_{n,m}^4$, where m, n are both odd. Consequently, $\chi(O_{n,m}^4) = 3$.

• Case 2: *m* is odd, *n* is even

If *m* is odd, *n* is even, then by equation (1.1), $\chi(C_m) = 3$ and $\chi(C_n) = 2$. Thus, $\chi(O_{n,m}^k) \ge 3$. Suppose that the vertices of C_n are colored with two of the different colors that also color the vertices of C_m , say a_i, a_2 colors for C_n and a_1, a_2, a_3 colors for C_m . Consider the following subcases where k = 3 (odd) and k = 4 (even):

• <u>subcase 2.1:</u> If k = 3

Then a path P_3 is attached to vertex colored say a_i , i = 1, 2, 3 of C_m and the other end vertex is also connected to a vertex colored a_i of C_n , such that the second (middle) vertex of P_3 is a_j , j = 1, 2, 3, where $a_i \neq a_j$. Thus, three is the minimum number of colors to color the vertices of $O_{n,m}^3$ where *m* is odd and *n* is even. Consequently, $\chi(O_{n,m}^3) = 3$.

• <u>subcase 2.2:</u> If k = 4

Note that by Remark 2.1, $\chi(P_4) = 2$. Suppose further that P_4 is colored with two from the same set of different colors that color the vertices of C_m and C_n , say a_1, a_2 . Then, the first vertex of P_4 is attached to a vertex colored $a_i, i = 1,2$ of C_m and is adjacent to a vertex colored $a_j, j = 1,2$, which is the second vertex of P_4 , and the last vertex is then connected to a vertex colored $a_j, j = 1,2$ of C_n , where $a_i \neq a_j$. Note that the vertices of C_m are colored $\{a_1, a_2, a_3\}$. Thus, three is the minimum number of colors to color the vertices of $O^4_{n,m}$, where m is odd, n is even. Consequently, $\chi(O^4_{n,m}) = 3$.

• Case 3: *m* is even, *n* is odd

If *m* is even, *n* is odd, then the proof of this case is similar to case 2.

• Case 4: *m*, *n* are both even

If m, n are both even, then by equation (1.1), $\chi(C_m) = \chi(C_n) = 2$. Suppose the vertices of C_m and C_n are

colored with the same set of different colors say a_1, a_2 . Consider the following subcases where k = 3 (odd) and k = 4 (even):

• <u>subcase 4.1:</u> If k = 3

Then a path P_3 with vertices colored with the same set of different colors a_1, a_2 , is attached to vertex colored say $a_i, i = 1, 2, 3$ of C_m and the other end vertex is also connected to a vertex colored a_i of C_n , such that the second (middle) vertex of P_3 is $a_j, j = 1, 2, 3$, where $a_i \neq a_j$. Thus, two is the minimum number of colors to color the vertices of $O_{n,m}^3$ where *m* is odd and *n* is even. Consequently, $\chi(O_{n,m}^3) = 2$.

• <u>subcase 4.2:</u> If k = 4

Note that by Remark 2.1, $\chi(P_4) = 2$. Suppose further that P_4 is colored with two from the same set of different colors that color the vertices of C_m and C_n , say a_1, a_2 . Then, the first vertex of P_4 is attached to a vertex colored $a_i, i = 1,2$ of C_m and is adjacent to a vertex colored $a_j, j = 1,2$, which is the second vertex of P_4 , and the second vertex is adjacent to a vertex colored $a_i, i = 1,2$, which is the third vertex of P_4 , and the last vertex is then connected to a vertex colored $a_j, j = 1,2$ of C_n , where $a_i \neq a_j$. Thus, two is the minimum number of colors to color the vertices of $O_{n,m}^4$, where m is odd, n is even. Consequently, $\chi(O_{n,m}^4) = 2$.

It is easy to prove that the next corollaries hold. Proofs are similar to Theorem 3.1.

Corollary 3.1

For all integers $k \ge 3$, k is odd,

$$\chi(O^k_{n,m}) = 3 \qquad if:$$

- *m, n are both odd*
- *m is odd, n is even*
- *m is even, n is odd*

and

$$\chi(O_{n,m}^{k}) = 2$$
 if m, n are both even.

Corollary 3.2 For all integers $k \ge 2$, k is even, $\chi(O_{n,m}^k) = 2$.

Theorem 3.2 For all integers $m, n \ge 3$ and for integers $k = 3, 4, \chi_e(O_{n,m}^k) = 3$.

Proof:

• Case 1: *m*, *n* are both odd

If *m*, *n* are both odd, then by equation (1.2), $\chi_e(C_m) = \chi_e(C_n) = 3$. Thus, $\chi_e(O^k_{n,m}) \ge 3$. Suppose the edges of C_m and C_n are colored with the same set of different colors, say b_1, b_2, b_3 .

• <u>subcase 1.1:</u> If k = 3

Note that P_3 has two edges and suppose we color its edges with two from the set of different colors that color the edges of C_m and C_n , say b_i , b_j . Then b_i color of P_3 is attached to C_m and is incident to edges colored b_j and b_k of C_m , while the other color of the edge of P_3 say b_j is attached to C_n and is incident to edges colored b_i and b_k of C_n , where $b_i \neq b_j \neq b_k$. Hence, three is the minimum number of colors that color the edges of $O^3_{n,m}$. Consequently, $\chi_e(O^3_{n,m}) = 3$.

• <u>subcase 2.1:</u> If k = 4

Note that by Remark 3.1, $\chi_e(P_4) = 2$ and suppose the edges of P_4 are colored with two from the same set of different colors that color the edges of C_m and C_n , say b_i, b_j . Since P_4 has three edges, suppose that P_4 is colored with b_i 's and b_j , i = 1,2,3, j = 1,2,3 such that b_j is the middle edge and the two b_i 's are first and the last edges. Then, b_i of P_4 is connected to C_m and is incident to edges colored b_j and b_k of C_m , while the other b_i of C_n . Hence, three is the minimum number of colors that color the edges of $O_{n,m}^4$. Consequently, $\chi_e(O_{n,m}^4) = 3$.

• Case 2: *m* is odd, *n* is even

If *m* is odd, *n* is even, then by equation (1.2), $\chi_e(C_m) = 3$ and $\chi_e(C_n) = 2$. Suppose the edges of C_n are colored with two from the same set of different colors that color the edges of C_m , say b_1 , b_2 for C_n and b_1 , b_2 , b_3 for C_m . By this, the entire proof follows from case 1.

• Case 3: *m* is even, *n* is odd

If m is even, n is odd, then the proof of this case is similar to case 2.

• Case 4: *m*, *n* are both even

If *m*, *n* are both even, then by equation (1.2), $\chi_e(C_m) = \chi_e(C_n) = 2$. Suppose the edges of C_m are colored by a set of different colors say b_j , b_k and C_n is colored with the set of different colors, say b_i , b_k , where i, j, k = 1, 2, 3 and $b_i \neq b_j \neq b_k$.

• subcase 4.1: If
$$k = 3$$

Note that by Remark 2.1, $\chi_e(P_3) = 2$. Clearly, $\chi_e(O_{n,m}^3) \ge 3$ since $O_{n,m}^3$ has three edges incident to each other at the endpoints of P_3 . Then b_i color of P_3 is attached to C_m and is incident to edges colored b_j and b_k of C_m , while the other color of the edge of P_3 say b_j is attached to C_n and is incident to edges colored b_i and b_k of C_n and is incident to edges colored b_i and b_k of c_n and is incident to edges colored b_i and b_k of c_n and is incident to edges colored b_i and b_k of c_n , where $b_i \neq b_j \neq b_k$. Hence, three is the minimum number of colors that color the edges of $O_{n,m}^3$. Consequently, $\chi_e(O_{n,m}^3) = 3$.

• <u>subcase 4.2:</u> If k = 4

Note that P_4 has three edges and by Remark 3.1, $\chi_e(P_4) = 2$. Clearly, $\chi_e(O_{n,m}^4) \ge 3$ since $O_{n,m}^4$ has three edges incident to each other at the endpoints of P_k . Suppose that there are two $b'_i s, i = 1, 2, 3$ and one $b_j, j = 1, 2, 3$ is the color of the middle edge, while the two $b'_i s, i = 1, 2, 3$ are the colors of the first and the last edges. Then the first b_i color is attached to C_m and is incident to edges colored b_j and b_k colors C_m , while the other b_i is connected to C_n and is also incident to edges b_j and b_k colors of C_n . Hence, three is the minimum number of colors that color the edges of $O_{n,m}^4$. Consequently, $\chi_e(O_{n,m}^4) = 3$.

Therefore for any cases, the proof follows.

Similar arguments will hold for the last Theorem.

Theorem 3.3 For all integers m, $n \ge 3$, and for all integers $k \ge 3$, $\chi_e(0^k_{n,m}) = 3$.

Corollary 3.3 For all integers $m, n \ge 3$ and for any integers $k \ge 3$,

$$\chi(0^{k}_{n,m}) \leq \chi_{e}(0^{k}_{n,m}) \leq 3.$$

Proof:

Note that for cases where m, n are both odd, m is odd, n is even and m is even, n is odd, by Theorem 3.1, $\chi(O_{n,m}^k) = 3$ and by Theorem 3.2, $\chi_e(O_{n,m}^k) = 3$. Thus, $\chi(O_{n,m}^k) \leq \chi_e(O_{n,m}^k)$. Similarly, for cases where m, n are both even, by Theorem 3.1, $\chi(O_{n,m}^k) = 2$ and by Theorem 3.2, $\chi_e(O_{n,m}^k) = 3$. Thus, $\chi(O_{n,m}^k) \leq \chi_e(O_{n,m}^k)$. Therefore, in all cases, $\chi(O_{n,m}^k) \leq \chi_e(O_{n,m}^k)$.

Acknowledgements

The authors would like to thank the referee for the helpful suggestions and the members of ASRJETS. Special thanks to authors' families and friends.

References

[1]. E. Arugay. "Path Chromatic Number of a Graph." In Dissertation Conference. Ateneo de Manila University, 1990.

- [2]. R. Balakrishnan and K. Ranganathan. A Textbook of Graph Theory, 2nd Ed., Springer, 2012.
- [3]. T. Harju. Lecture Notes on GRAPH THEORY. Department of Mathematics, University of Turku, FIN-20014, Turku, Finland, 2012.