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Abstract 

The application of response surface methodology in agricultural context, especially in agronomical research for 

years now, has been of great interest to many statisticians. Most of their earlier works were to a large extent on 

ordinary polynomials which exhibited undesirable problem of unboundedness, symmetry about the optimum, 

false location of optimum and nonsensical extrapolation. In this work, Kuhn-Tucker optimality criteria have 

proved to be more efficient when compared with methods like Berry and Mitscherlich. In fact, the initial 

problem of unboundedness, symmetry about the optimum, etc, are removed. Numerical application using 

different types of fertilizer combination to compare crop yield confirmed this assertion. 

Keywords: Complementary; hessian matrix; optimality; response surface; reciprocal polynomial.  

1. Introduction 

The introduction of response surface methodology in agricultural context was done by [1] in Germany, though 

most of the earlier works on it by the author were to a large extent on ordinary polynomial. It also focuses on 

experimental models. Reference [2] also expressed the hope that the method will be of immense value on other 

fields where experimentation is sequential and the error, fairly small.  

------------------------------------------------------------------ 

* Corresponding author.  
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Therefore, the introduction of factorial experiment in agricultural context by [3] may have sided the fulfillment 

of their hope in the application of response surface methodology beyond the walls of chemical industries, 

particularly in agronomic research. Reference [4] also opined that the fundamental applications of response 

surface methodology in any experimental design, is in approximating the true models discriminating between 

surfaces and the exploration of response surface. 

Reference [5]  has also demonstrated in his work entitled “Agricultural Response Surface Experiment based on 

Four Level Factorial Design” that the ordinary polynomials, particularly the second order, have been very 

reliable in exploring response surfaces; this is because of the conceptual and computational simplicity and easy 

location of the response surface. It also shows that the experimental models, on the other hand, exhibit apparent 

difficulties in the estimation of parameters of interest by the usual least square method; and the model 

transformation may be difficult in the case of intrinsic non-linear model in the parameter. On the other hand, [6] 

also shows that reciprocal polynomials have the desirable properties of boundedness, asymptotic distribution 

free, invariance and speedy convergence. Awareness of the uses of reciprocal polynomial increases following its 

use in multifactor experiment on Bermuda grass by [7] for parameter estimation. The main use of reciprocal 

polynomials has been in agronomy – the research area from which they were derived. Its various formulations 

are mainly as growth studies in plant-yield relationship and inverse linear regression method of calibration. 

2. Materials and Methods 

In the study of crop-yield fertilizer relationship, [1] proposed the model 

( )( ) ( )11 DxCeAy +−−=  

y  is the crop yield, x  is the rate of fertilizer application, and A , C , D  are parameters which measure, 

respectively: maximum yield which could not be exceeded by the use of the fertilizer, the efficiency of the 

fertilizer [assumed constant], and the soil content of the fertilizer in the control plots. The model was popularly 

used; and though most suitable in all biometric research. However, this was tried by various experimenters and 

later found not always adequate ( [8]; [9] ; [10] ; [11]). This was because C  was found not to be constant but 

varies with the kind of plant, form of nutrient, fertility and planting rate. Thus, much mathematical complexity 

was involved in estimating C  which has less appeal to experimenters, [12] 

For purposes of parameter estimation, [13]  suggested a transformation of the model into the form 

( ) ( )21,,1,0,10, −=<<+= ∗ nxy x ρβρα  

∗ρ  represents the factor by which the deviation from its asymptotic value is reduced for a unit increase in x . 

The model was found not to give a good fit for some plants, and its convergence, sometimes very slow, [13]. 

[14]  therefore proposed the first use of inverse model 

( )31 βρα +=−w  
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[where ρ  is the density defined as the number of plants per unit area, and α , β  are parameters] on the 

assumptions that the growth curve is logistic and yield per area, w , is ultimately independent of density. 

Therefore, the model is adequate for vegetable plants [that is, those plants cultivated from any part(s) of a plant 

other than the seeds, e.g. Bryophium from leaves, yam, potato from tuber, cassava, sugar cane from stem-

cutting] but inadequate for reproductive plants [that is, limit of yield obtainable from a particular area with the 

particular crop]; and reproductive plants have parabolic relationship [that is, higher densities resulting in low 

yields].  Therefore, modified the model to allow for both relationships. That is, 

( )410, ≤<+=− θβραθw  

[where θ , which depends on any part of the plant like leaves, shoots, stem, etc, is called Critical Parameter; 

where 1=θ  refers to vegetative plant and 1<θ  refers to reproduction plants]. 

To allow for symmetric designs for spacing experiments, Nelder and Bermuda (1966) modified it to 

( )5Φ− += βραθw  

[where Φ  defines the nature of the two curves]. [7]  generalized them to the family of inverse polynomials by 

proposing 

( )6,,,in  polynomial 21
1

k

k

i
i

xxx
y

x
=

∏
=  

[where sx '1  are levels of k  experimental factors]. For a single factor, [7]  has given it as 

( )7 βα += x
y
x

 

and for a 22×  design, it is 

( )8211221111000
21 xxxx

y
xx

ββββ +++=  

which is the inverse analogue of 22  factorial experiment. In order to allow for the effects of density to be 

separated into within row and between row spacing [ 1x  and 2x ], [13] suggested the model 

( ) ( )910,1
2112

1
21

1
11 ≤<+++= −−−− θβββαθ xxxxw  

particularly for regularly spaced crops,the theoretical properties [form] of ( )Φ,θ , ( )ρ,w  are compared  and 

such relationship for the response curves. 
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Φ− += βραθw  

Φ=θ  implies asymptotic yield [vegetable plant] 

Φ<θ  implies parabolic yield [reproductive plants] 

Φ>θ  gives θ−w  as unbounded which is biologically unrealistic 

An agriculturist will always be interested in obtaining the maximum yield. Our interest is to determine the 

maximum yield. Let our maximum yield be defined by 

maxww =′  

( ) ( )10
1

1
2

1
112

1
22

1
11

1
2

1
1

θβββα
−−−−−−− +++= xxxxxxw  

 was obtained  for a one-factor experiment disregarding θ  as variable. However, since θ  depends on some 

parts of the plant and, in certain plants change with maturity  [7] , it can be considered a variable. Hence, 

( ) ( )11,, 21 θxxfw =  

On finding 1x , 2x  and θ  which maximize w , we obtain 

β
αββαββ −+±−±

=
11

maxw  

Therefore, the value of 1x , 2x  and θ  which yield maxw  are as given in [1]. We estimate the various values of 

θ̂  and test for statistical significance between the various obtained by [13] and the analytical values so far 

obtained. The parameter estimates of maxw  have been obtained using Gaussian-Newton method. Consequently, 

the various values of θ̂  are obtained. In certain circumstances, an agriculturist may be forced to seek some 

proportion, ( )10 << λλ  of this maximum yield. This may be a situation where full yield is unattainable or 

simply unavailable. This may be due to some natural disasters which may affect the survival of these plants at 

full harvest time. 

3. Results 

There are four fertilizers: Nitrate base, Phosphate base and Potassium base, to be involved in this combination 

and applied to four crops: rice, yam, cassava and cocoyam. Let qnc  be different ways n  fertilizer combination 

could be obtained from q  ways. This implies that there are different groups of fertilizers, each one consisting of 

n  fertilizers that can be selected from q  combinations. 
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Then there are ∑ qnc  possible groups of fertilizers in all form which selection can be made. This approach 

requires us to solve ∑
=

q

n
qnc

2
 different quadratic programming problem from which an optimal group of crops 

can be selected. This will help us feed the parameter of each combination into the model and solving the 

resulting problems one by one to obtain the optimal solution. The combination of group of fertilizer with the 

maximum objective function value gives the optimal solution. 

Let 

ML  = Model 

FC  = Fertilizer combination 

MOFV  = Mitscherlich objective function values 

BOFV  = Berry objective function values 

KUOFV  = Kuhn-Tucker objective function values 

MCT  = Mitscherlich computer time 

MNI  = Mitscherlich number of iterates 

KUCT  = Kuhn-Tucker computer time 

KUNI  = Kuhn-Tucker number of iterates 

BCT  = Berry computer time 

BNI  = Berry number of iterates 

Manual Illustration Using the Kuhn-Tucker Conditions 

Consider the quadratic programming problem 

0,
1:

62::..
826233:

21

21

21

21
2
221

3
2

≥
≥−
≤+

−−+−=

xx
xxII

xxItS
xxxxxxZMaxP

 

Here, 

2=n  [two variables, 1x  and 2x ] 
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2=m  [two constraints] 

TABLE 1: Quadratic Program Results for Three Methods 

MC FC MOFV MNI BOFV BNI KUOFV KUNI 

QP1 1, 2 178.3 1 176.1 1 175.8 1 

QP2 1, 3 197.8 2 196.3 2 195.3 1 

QP3 1, 4 163.4 2 166.2 1 164.9 1 

QP4 2, 3 176.8 1 176.1 1 175.2 1 

QP5 2, 4 218.6 3 214.1 3 213.1 2 

QP6 3, 4 24.2 2 21.1 3 20.4 2 

QP7 1, 2, 3 73.1 2 74.3 2 74.1 1 

QP8 1, 2, 4 37.6 1 38.2 1 36.4 1 

QP9 1, 3, 5 48.4 1 45.2 2 43.1 2 

QP10 2, 3, 5 46.8 3 45.1 1 44.4 1 

QP11 1, 2, 3, 4 50.1 3 50.4 4 49.1 3 

 

TABLE 2: Computer Time for the Three Methods 

NANO SECONDS 

MCT BCT KUCT 

0.1314 0.1261 0.1258 

0.1148 0.1142 0.1137 

0.1210 0.1163 0.1136 

0.1145 0.1142 0.1128 

0.2291 0.2194 0.2187 

0.2165 0.2168 0.2169 

0.1258 0.1160 0.1109 

0.1138 0.1139 0.1140 

0.1140 0.1140 0.1140 

0.1143 0.1142 0.1141 

0.4013 0.7942 0.4032 

 

Then the Kuhn-Tucker conditions are: 

1. 0
1

≤
∂
∂

−
∂
∂ ∑

=

m

i j

i
i

j x
g

u
x
f
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2. 0
1

=










∂
∂

−
∂
∂ ∑

=

∗
m

i j

i
i

j
j x

g
u

x
fx  

3. ( ) 0≤−∗
ii bxg  

4. ( )( ) 0=−∗
iii bxgu  

5. 0≥∗
jx  

6. njmixxxu ji ,,1,,,1,0  ====≥ ∗  

The applications of the Kuhn-Tucker conditions are as follows: 

Given that ( ) 211 2xxxg +=  and ( ) 212 xxxg +−=  

1. ( ) 01
2

1 11

≤
∂
∂

−
∂
∂

⇒= ∑
=i

i
i x

g
u

x
Zj  

0
1

2
2

1

1
1

1

≤







∂
∂

+
∂
∂

−
∂
∂

⇒
x
gu

x
gu

x
Z

 

( ) ( ) 02626 2121 ≤−−−−⇒ uuxx  

2. ( ) 01
2

1 11
1 =








∂
∂
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i
i x

g
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( ) ( )( ) 02626 21211 =−−−−⇒ uuxxx  

1. ( ) 02
2

1 22
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∂
∂
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∂
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=i

i
i x

g
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( ) ( ) 02842 2121 ≤+−−+−⇒ uuxx  
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2. ( ) 02
2

1 22
2 =
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( ) ( )( ) 02842 21212 =+−−+−⇒ uuxxx  

3. ( ) ( ) 01 11 ≤−⇒= ∗ bxgi  

062 21 ≤−+⇒ xx  

4. ( ) ( )( ) 01 111 =−⇒= ∗ bxgui  

( ) 062 211 =−+⇒ xxu  

3. ( ) ( ) 02 22 ≤−⇒= ∗ bxgi  

0121 ≤++−⇒ xx  

4. ( ) ( )( ) 02 222 =−⇒= ∗ bxgui  

( ) 01212 =++−⇒ xxu  

5. 0,0 21 ≥≥ xx  

4. Discussion 

First and foremost, we note the similarities in the result from the objective function value for all the fertilizer 

combinations using all the methods, including Kuhn-Tucker. We noticed that they are about 98 percent the same 

in all cases; but the number of iterates before this as obtained differ. We also noticed that in the Kuhn-Tucker, 

the number of iterates before the optimal solution as obtained in all cases were smaller. Also, the computer run-

time to obtain the optimal solution from QP1 to QP11 differs significantly. In QP1, the computer run-time to 

obtain an optimal solution was 0.4032 Nano seconds, while the average of others stood at 0.7942 about, twice 

that of Kuhn-Tucker. On the whole, from the tables we noticed that the Kuhn-Tucker optimality criteria are 

better than any other method discussed in this work. Also, in terms of optimal yield, the fertilizer combination 

QP5 gives the greatest yield which stands at 214kg as compared with others. 

 5. Conclusion 

The introduction of Kuhn-Tucker optimality criteria in the selection of fertilizer combinations for crop optimal 
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yield has been found to be more reliable in the presence of computing facilities. It has been maximally used in 

obtaining maximum yield of its proportion in the absence of full yield. A balance has also been struck over 

which fertilizer will give maximum yield under different crop formation. This has been done by establishing 

optimum design points for optimum responses in different steps of the experiment. The significant difference 

established between Kuhn-Tucker optimality criteria and other methods in the eleven quadratic programs [see 

Table 1] shows that the objective function values, the computation time and the number of iterates were fewer in 

all cases. This significant difference between Kuhn-Tucker and other methods underscores the need for a non-

empirical approach in the determination of maximum yield. 
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