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Abstract 

The detection of small targets remains a critical challenge within the field of image processing. Traditional 

techniques, such as image subtraction with frame-to-frame registration, suffer from high false alarm rates. Even 

state-of-the-art deep learning architectures, like YOLO and Masked R-CNN, exhibit limitations in this domain. 

In overextended distances, the inherent feature quality of small targets degrades significantly, leading to a 

scarcity of informative data for conventional detection algorithms. Consequently, accurate visual recognition 

becomes a particularly hard task.This work presents a novel detection approach that draws inspiration from the 

human visual attention mechanism. By leveraging dense optical flow, the model prioritizes moving objects 

within the scene, facilitating effective target detection. Furthermore, the proposed method employs K-Means 

clustering to achieve robust foreground-background separation based on color intensity characteristics. To 

address the limitations of dense optical flow with stationary targets, a dedicated tracking algorithm is also 

introduced. Our approach demonstrated a high level of accuracy (98%) when evaluated on unseen test data. 

Additionally, the algorithm functioned in real-time, enabling immediate processing.  

Keywords: Small Target; Optical Flow; K-Means; Infrared Imaging; Real-time; Tracking. 

1. Introduction 

The accurate detection of small targets has great importance in multiple fields, affecting our safety, security, and 

knowledge in many ways. To list a few of its applications, we can mention early detection systems for drones 

and missiles, border surveillance, and anti-terrorism systems. there is no universal definition of a small target 

since it is often context-dependent 
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Based on related reviews and research in this field, we can identify it by the number of pixels, any target with 

2x2 up to 9x9 pixels is considered a small target, or by pixel ratio; any target occupies less than 15% of the 

whole image is considered small target [1]. This research investigates the detection of diminutive targets 

typically characterized by minimal dimensions, ranging from 2x2 to 9x9 pixels. These targets are devoid of 

substantial textural information, posing a significant challenge for contemporary machine learning algorithms, 

such as YOLO and Masked R-CNN, due to their limited capacity to effectively discern such minute objects. 

This research draws inspiration from the human visual system's processing mechanisms. The human brain 

prioritizes the processing of motion and color variations within the visual field. This prioritization facilitates the 

detection of even the smallest targets based on their movement, followed by their recognition through the 

analysis of color and saturation differences compared to the background. Drawing an analogy to the human 

visual system's ability to detect a moving ant on the kitchen floor, we propose a system inspired by these 

biological principles. This system leverages dense optical flow to identify small targets based on their pixel-wise 

motion. Subsequently, K-Means clustering is employed to refine the candidate regions derived from the optical 

flow analysis. This filtering step allows us to isolate potential targets from background movements, such as 

those caused by swaying tree leaves or camera jitter. Within the context of this study, we will 

 Share two new datasets for small target detection and recognition. Section 3 

 Propose a novel small target detection system with two recognition approaches for both visual and 

thermal images. Section 4 

 Proposes a powerful tracking algorithm that suits our targets’ characteristics and the proposed detection 

system. Section 5 

 Compare the proposed algorithm with YOLO versions 8 and 9. Section 6 

To facilitate reproducibility and knowledge sharing, the code for the proposed detection algorithm and its 

associated network structure is publicly available. Additionally, the code used for training the YOLO model, 

along with the corresponding datasets, has been made accessible through an online repository. 

2. Related work 

Target detection is the process of finding objects of interest in images. this field has gained a lot of interest in 

the recent decade with the development of computer vision technologies. Many algorithms have been proposed. 

Convolutional neural networks (CNNs) have been used in many algorithms like SSD, YOLO, R-CNN, and 

faster RCNN [2, 3, 4, 5, 6, 7, 8, 9]. Lawal [10] proposed a modification to YOLO v3 to detect tomatoes in 

complex environments. Wu and his colleagues. [11] proposed a multiple-scaled Faster R-CNN-based face 

detection algorithm for small face detection. Shakarami and his colleagues. [12] used YOLO v3 for blood cell 

recognition. Shi and his colleagues. [13] used YOLO v4 for oil quality detection.  

Small target detection is a challenging task for several reasons, to list a few: 1) Images are relatively large 

compared to the target size. 2) The target background could be complex and fuzzy. 3) Small targets with few 

pixels usually do not have enough feature information for classic detection algorithms. 
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A lot of methods have been developed to address small target scenarios. For instance, Lu and his colleagues. 

Reference [14] proposes a new object detector for remote sensing images called SAFF-SSD (Self-Attention 

Combined Feature Fusion-based SSD). It uses a modified EfficientNetV2-S as the backbone for feature 

extraction. A detection neck called CSP-PAN was employed for fusing features from different levels. The paper 

also proposed a new loss function using the Normalized Wasserstein Distance (NWD) instead of the commonly 

used Intersection over Union (IoU) for evaluating bounding boxes. An optimized YOLO v3 for detecting 

objects of various sizes in remote sensing imagery was proposed in [15]. To toggle objects with various sizes 

that clutter together, the authors replaced the feature extraction component of YOLO-V3 with DenseNet and 

increased the object detection scale for YOLO to 4. Many researchers explored data augmentation techniques, 

contextual information, and multi-scale feature learning to enhance small target detection algorithms’ 

performance. Kisantal and his colleagues. Reference [16] proposed data augmentation method which involves 

randomly duplicating small targets in an image, but this resulted in scale and background mismatch issues. to 

overcome those issues, Chen and his colleagues. Reference [17] proposed AdaReasampling method to address 

background issues, and Yu and his colleagues. Reference [18] proposed the “Scale Match” method to address 

scaling issues. contextual information refers to the relationship between the target and background pixels, Zhao 

and his colleagues. Reference [19] proposed SODet network backbone that uses the attention principle [20] to 

detect connections between objects in images with distant targets, SODet combines both global and local image 

features in an adaptive way for better small object detection. it uses an adaptive fusion strategy that assigns 

weights to these features based on the image content. This approach aims to give more importance to features 

that are more informative for detecting small objects in a particular image. Cao and his colleagues. Reference 

[21] proposed a Feature-Fused SSD algorithm to reconstruct the image back into pixel space through 

deconvolution. This algorithm enhanced the connection between contexts and improved the detection accuracy 

for small targets. Lim and his colleagues. Reference [22] proposed a model that incorporates features from 

different layers of a neural network to provide context. This context helps the model understand the surrounding 

area of the potential object, aiding in its identification. The paper proposes using a method called feature 

concatenation to combine information from various layers. It also employs an attention mechanism to focus on 

the most relevant parts of the image. This mechanism helps prioritize the features that are most likely to belong 

to the small object, filtering out background noise. 

In this study, YOLO was chosen as a reference for small target detection. YOLO, which stands for "You Only 

Look Once", is a real-time object detection algorithm. Unlike some object detection methods that analyze 

images in stages, YOLO is a single-stage detector. It processes the entire image at once, making it faster for 

real-time applications. It relies on CNNs, which are artificial neural networks particularly adept at image 

recognition. By analyzing the image through a series of filters, CNN can identify objects and their locations 

within the image. predicts bounding boxes around detected objects in the image. These boxes indicate the 

location and size of the object. Additionally, YOLO assigns a probability score to each bounding box, indicating 

the confidence level that the identified region contains a specific object class (e.g., caries, implant, filling). We 

have trained YOLOv7 [23], YOLOv8 [24], and YOLOv9 [25] on the proposed dataset to evaluate our model 

performance against other modern detection algorithms. 
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3. Materials 

 

Figure 1: A few samples from the proposed small target detection image dataset, the first raw features optical 

camera images while the second one features thermal camera images 

There aren’t many datasets that suit small target detection in both infrared and optical images, and due to the use 

of dense optical flow, we cannot evaluate the proposed algorithm using individual images similar to classic 

detection algorithms. Svanström and his colleagues. [26] shared a dataset of 10-second videos for four target 

classes: airplanes, drones, birds, and helicopters. They annotated videos to close, medium, and distant videos but 

didn’t provide further annotation to target position in frames. To evaluate the proposed algorithm, we ignored 

close and medium targets and used the distanced videos only. To compare the proposed algorithm with YOLO, 

we are sharing the “Small Target DS YOLO
1
” dataset. In which we have annotated 2027 IR and 2110 V frames 

with YOLO v5 annotations format. Figure 1 presents a few samples from the proposed DS after drawing target 

boxes.To build our classifier, we extracted dense optical flow proposed areas, reshaped them to 20x20 pixels, 

and sorted them in image pairs (expected target area in two consecutive frames) into target and noise classes. 

The dataset is shared as “Small Target Image Pairs Dataset
2
”. Total number of image pairs is 6303. Figure 2 

presents a few samples from the proposed image pairs DS. 

 

Figure 2: A few samples from the proposed small target image pairs dataset 

                                                      
1
 https://www.kaggle.com/datasets/saadkentar/small-target-ds-yolo 

2
 https://www.kaggle.com/datasets/saadkentar/small-target-image-pairs-dataset 
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4. The Proposed Detection Algorithm 

The proposed algorithm consists of three stages, Figure 3 shows a block diagram of the proposed algorithm. In 

the first stage (first row of Figure 3), we calculate the dense optical flow of two consecutive frames. If we are to 

express pixel intensity as a function I(x, y, t), where (x, y) is the pixel location and t is the time, a consecutive 

frame over a short period (dt) should have the same intensity values resulting in 

𝐼(𝑥, 𝑦, 𝑡) = 𝐼′(𝑥 + 𝑑𝑥, 𝑦 + 𝑑𝑦, 𝑡 + 𝑑𝑡)    (1) 

Where I is the value in (t), and 𝐼′ is the value at (𝑡 + 𝑑𝑡). By using Taylor Series Approximation and removing 

the common terms we can reach 

𝐼(𝑥 + 𝑑𝑥, 𝑦 + 𝑑𝑦, 𝑡 + 𝑑𝑡) = 𝐼(𝑥, 𝑦, 𝑡) + 
𝜕𝐼

𝜕𝑥
𝑑𝑥 +

𝜕𝐼

𝜕𝑦
𝑑𝑦 +

𝜕𝐼

𝜕𝑡
𝑑𝑡 + ⋯ 

→  
𝜕𝐼

𝜕𝑥
𝑑𝑥 +

𝜕𝐼

𝜕𝑦
𝑑𝑦 +

𝜕𝐼

𝜕𝑡
𝑑𝑡 = 0 →

𝜕𝐼

𝜕𝑥
𝑢 +

𝜕𝐼

𝜕𝑦
𝑣 +

𝜕𝐼

𝜕𝑡
= 0 ∶  𝑢 =

𝑑𝑥

𝑑𝑡
, 𝑣 =

𝑑𝑦

𝑑𝑡
      (2) 

𝜕𝐼

𝜕𝑥
, 

𝜕𝐼

𝜕𝑦
 and 

𝜕𝐼

𝜕𝑡
 are the image gradients along the horizontal axis, the vertical axis, and time. solving those 

equations determines the movement over time. We have used Farneback's dense optical flow algorithm due to 

its accuracy and efficiency. It constructs a pyramid of coarsened images to handle large displacements. Within 

each level, local polynomial expansions capture intensity variations between corresponding pixels in 

consecutive frames. The algorithm optimizes these polynomials to minimize the difference between predicted 

and actual intensity changes under motion, making it a mainstay in computer vision tasks. The outcome of dense 

optical flow is restructured as an image with the same dimensions as the input frames in HSV (Hue, Saturation, 

and Value) color space. channel H data represents the motion direction for each pixel while channel V data 

represents the speed.  

In the second stage, H or V channel data are processed separately based on the camera movement state. Camera 

movement state c(t) can be estimated based on V channel data. Moving the camera accumulated speed to all 

pixels, resulting in high speed-data sum 

𝑐(𝑡) = {
1 𝑖𝑓 𝑠𝑢𝑚(𝑉) > 𝑇𝑣

0 𝑖𝑓 𝑠𝑢𝑚(𝑉) < 𝑇𝑣
    (3) 

Where 𝑇𝑣 is a threshold chosen based on the camera scene background. For a static or slow-moving camera, it is 

easier to detect potential targets using V channel data since target speed can reveal its location. But in the case 

of a moving camera, most pixels will have the camera speed making V channel data hard to use.   

𝑑(𝑡) = {
𝑝𝑣(𝑉) 𝑖𝑓 𝑐 = 1 ∶  𝑝𝑣 = 𝐻𝑃𝐹

𝑝ℎ(𝐻) 𝑖𝑓 𝑐 = 0 ∶  𝑝ℎ = 𝑃𝑆𝐹
    (4) 

Therefore, using H channel data would be easier since the target moving direction will most likely differ from 



American Academic Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) - Volume 98, No  1, pp 53-70 

 

58 

 

the camera moving direction. A High-Pass Filter (HPF) was used as 𝑝𝑣 to process V channel data, and only pass 

pixel data with high speed. Processing H channel data requires a Band-Stop Filter (PSF) 𝑝ℎ to suppress the 

camera’s moving direction data and only keep target direction data. This stage is illustrated in row 2 of Figure 3. 

The third stage should filter the areas proposed by previous stages to potential targets or background (noise). 

Two approaches were explored for this stage. The first one is based on image clustering. We begin by applying 

a custom convolutional filter (CF) to the proposed image area slice (S) to improve target features 

𝑆′ = 𝑆 ∗ 𝐶𝐹 ∶ 𝐶𝐹 = [
−2 −1 0
−1 1 1
0 1 2

]    (5) 

Where * indicates convolution, 𝑆′ is the processing image slice, and the value of CF was chosen based on 

multiple experiments on different filters. Then we apply a clustering algorithm to make the foreground-

background separation. Clustering is a method to divide a set of data into a specific number of groups. There are 

many types of unsupervised clustering algorithms: K-Means clustering, Fuzzy C-means clustering, mountain 

clustering method, and subtractive clustering method. K-Means was chosen for this study due to its 

computational effectiveness and high speed. K-Means [27] is an iterative algorithm in which it minimizes the 

sum of distances from each object to its cluster centroid, over all clusters. To cluster data using K-Means we 

1. initialize cluster centers for the 𝑘𝑡ℎ cluster 

2. calculate Euclidean distance between image pixels and centers using 

𝑑 = ‖𝑝(𝑥, 𝑦) − 𝑐𝑘‖    (6) 

Where 𝑝(𝑥, 𝑦) is the input pixels, 𝑐𝑘 is the center of the 𝑘𝑡ℎ cluster 

3. assign pixels to the nearest center based on the value of d 

4. after assigning all pixels to the nearest centers, recalculate the new center position using 

𝑐𝑘 =
1

𝑘
∑ ∑ 𝑝(𝑥, 𝑦)    (7)

𝑥∈𝑐𝑘𝑦∈𝑐𝑘

 

5. repeat the process until it satisfies the tolerance or accepted error value 

6. reshape the clustered pixels into an image 

Since we are trying to make a foreground-background separation, a value of 2 was chosen for k. After applying 

K-Means, we can make target-noise decisions based on background self-coherence since we expect to have a 

small target surrounded by a homogeneous background. 

in the second approach, after applying the same custom convolutional filter to the image slice. We pass the 

processed image slice 𝑆′ to a custom neural network structure trained to make the target-noise separation. The 

network structure is illustrated in Table 1. 
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Figure 3: Proposed detector block diagram 

Two other structures were proposed. The first uses 3D convolutions to improve the target feature resolution 

from two successive slices, and the other uses LSTM to extract temporal target information from two successive 

slices. However, since two successive slices tend to have similar features, those proposed structures tend to have 

similar performance to the single slice structure. Therefore, we didn’t include them in the practical results 

section, yet we believe they could be further improved in future work. 

Table 1: Proposed classifier structure for target-noise separation 

Layer Output shape Params # 

Convolutional 2D (20, 20, 32) 896 

Max Pooling 2D (10, 10, 32) 0 

Convolutional 2D (10, 10, 64) 18,496 

Max Pooling 2D (5, 5, 64) 0 

Batch Normalization (5, 5, 64) 256 

Global Max Pooling 2D (64) 0 

Dropout (64) 0 

Dense  (2) 130 

The proposed algorithm pays more attention (assigns importance) to the moving pixels in frames which 

eliminates the need to process the whole image using a sliding window, improves the detection accuracy for 

small targets in cluttered backgrounds, and minimizes the detection processing time.  
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5. The proposed tracking algorithm 

Dense optical flow is designed to detect the smallest movement in consecutive frames. Yet it doesn’t fit 

stationary targets and can easily lose track of them. To overcome this disadvantage, we propose a tracking 

algorithm that keeps track of the last target position using the same K-Means approach mentioned in section IV 

to decide whether to keep or neglect the proposed target position for tracking. The proposed tracking algorithm 

can be summed in those three steps 

1. Initialize target boxes from dense optical flow output and assign IDs to the new targets. 

2. In the next frame, assign boxes to IDs based on the distance between the new proposed boxes and the 

old ones. 

3. check target existence in old positions without new feed to overcome optical flow stationary targets 

disadvantage. If a target exists, self-feed the old box to the same track ID.  

This tracking algorithm improves the proposed detection algorithm tolerance to stationary targets and enhances 

tracking and recognition performance for the proposed algorithm. 

6. Practical results 

We employed transfer learning to train YOLO versions 7, 8, and 9 for small object detection on the proposed 

dataset which combined visual and thermal images. The training process utilized 40 epochs to achieve results in 

Table 2, training plots and confusion matrixes for the three algorithms can be found in Appendix A 

Table 2: YOLO versions 7, 8, and 9 validation metrics 

Algorithm Precision % Recall % mAP@0.5 % 

YOLO v7 55.6 51.3 47.7 

YOLO v8 95.4 96.6 99.0 

YOLO v9 93.7 94.1 98.6 

Analysis of the validation metrics revealed that YOLO v7 exhibited limitations in detecting targets with low 

contrast and quality. Conversely, YOLO v8 and v9 demonstrated significantly higher potential for success in 

this application. Consequently, YOLO v7 was excluded from subsequent evaluations. 

The proposed classifier model was trained from scratch with 20x20 pixel images to distinguish targets from the 

background. An accuracy of 98% was achieved after 15 epochs of training. Figures 3 and 4 depict the 

corresponding accuracy and loss plots, respectively 
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Figure 4: Proposed target-noise classifier model accuracy per epoch plot 

To assess the generalizability of the proposed models, we employed unseen video data featuring drones for 

evaluation. These videos encompassed diverse background conditions, including clear skies, cloudscapes, and 

wooded areas. The target set comprised two categories: drones and birds. Notably, drones traversed across all 

backgrounds, while birds were confined to the wooded areas. To quantitatively gauge the models' performance, 

we calculated precision and recall metrics based on equations 8 and 9. 

𝑃 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
     (8) 

𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
     (9) 

A True Positive (TP) is achieved when there's a spatial overlap between the bounding box predicted by the 

algorithm and the ground truth location of the target object. Conversely, a False Negative (FN) occurs when the 

algorithm fails to detect an actual target present within the frame. Lastly, a False Positive (FP) arises when the 

algorithm erroneously predicts a target object in the frame that is demonstrably absent. Table 3 presents the test 

results.  

The first row of Table 3 shows that YOLOv8 prioritizes speed (33 fps) at the expense of accuracy compared to 

other algorithms. This trade-off suggests a potentially less complex model or training data skewed towards 

simpler scenes.  However, YOLOv8 demonstrates strength in controlled environments with clear skies or 

thermal imagery.  Its limitations in handling complex visual elements like clutter or varying illumination 

 
Figure 5: Proposed target-noise classifier model loss per epoch plot 
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necessitate further investigation for broader applicability. On the other hand, YOLOv9 exhibits significant 

improvements in both precision and recall, demonstrating its ability to handle small targets across thermal and 

visual imagery. However, this enhanced accuracy comes at a cost. The model generates a higher rate of false 

positives, requiring further refinement. Additionally, its computational demands far exceed those of v8, 

rendering it unsuitable for resource-constrained devices. This highlights the need to explore techniques for 

optimizing YOLOv9's efficiency while maintaining its superior detection capabilities. 

Table 3: Proposed models comparison with YOLO 

Algorithm Precession % Recall % Time (ms/frame) 

YOLO v8 42.52 37.21 30 

YOLO v9 87.81 82.96 580 

Ours (K-Means) 95.70 59.58 20 

Ours (NN) 98.26 67.67 40 

Our proposed algorithms achieve remarkable precision, surpassing YOLO in minimizing false positives. This 

signifies their strength in accurately distinguishing true objects from background clutter, leading to more reliable 

detections.   

The proposed two approaches reinforce the trade-off between model complexity and accuracy. While the K-

Means approach offers real-time processing suitable for resource-constrained devices, its lower recognition rate 

compared to neural networks highlights its limitations. This emphasizes the ongoing need for lightweight, high-

accuracy models that can bridge the gap between computational efficiency and robust object detection, 

particularly for real-world applications on devices with limited resources. 

Our lightweight neural network approach for target-background discrimination demonstrates a promising trade-

off between accuracy and efficiency. Compared to the K-Means-based approach, it achieves a notable 3% 

improvement in precision and a 7% improvement in recall. This signifies a significant reduction in false 

positives and a better ability to capture true targets. Importantly, these enhancements are achieved while 

maintaining real-time processing constraints, making the model suitable for deployment on resource-limited 

devices. This finding highlights the potential of lightweight neural networks for real-world applications where 

both high accuracy and fast processing are crucial. 

Our proposed neural network approach achieves impressive accuracy; however, a current limitation lies in its 

recall compared to YOLO v9. The test videos included a significant number of initially stationary targets, 

leading to a 14% higher recall rate for YOLO v9. This disparity highlights a key difference in the approaches: 

our method utilizes optical flow, which inherently misses stationary objects at the beginning of recordings. 

While real-world surveillance systems likely involve fewer initially stationary targets (especially for flying 

objects), this finding underscores the need for further exploration. Future work should investigate incorporating 

complementary methods to address this limitation. 
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7. Conclusion 

This study proposed a three-stage algorithm for small target detection. Simulating human attention mechanisms 

and giving more weight (importance) to moving areas produced encouraging results in both precession and 

recall. This approach can be further improved with the use of small fast ML models like the one used for 

recognition. The main drawback of optical flow is depending solely on movement and not paying stationary 

targets much attention. To overcome this drawback, a special tracking algorithm was proposed, that continues 

tracking stationary targets after the first detection. Future work can focus on some potential avenues such as: 

 Target appearance modeling: Integrating an appearance-based object detection module alongside the 

optical flow would allow the algorithm to identify stationary objects even if they haven't moved yet. 

 Background subtraction: Implementing background subtraction techniques could help identify initially 

stationary objects by detecting deviations from the background model. 

 Hybrid approaches: Combining optical flow with other motion detection techniques, like frame 

differencing, could offer a more comprehensive solution for capturing both moving and initially 

stationary objects. 

By exploring these strategies, future research can aim to bridge the current gap in recall and achieve robust 

object detection across various targets, especially in real-world surveillance applications. both the detector and 

tracker have room to grow in both speed and accuracy and can be worked on independently. 

Appendix A 

Training plots and confusion matrixes for YOLO models 

YOLO v7 

 

Figure 6 
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Figure 7  

  

 

Figure 8 

YOLO v9 
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Figure 9 

 

Figure 10 
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Figure 11 

YOLO v8 

 

Figure 12 
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Figure 13 

 

Figure 14 
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Availability of data and materials 

Demo videos for the proposed algorithm and YOLO can be found at 

https://www.youtube.com/playlist?list=PLvPINJRuTlZ9F-Pmst9B41tKxFpVgWYgn 

The custom classifier and the detector code can be found on 

https://github.com/saad4software/small_target_classifier 

https://github.com/saad4software/small_target_detector 
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