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Abstract: In this paper, three-dimensional �ow of a second grade �uid along a horizontal

in�nite plate which is subjected to a transverse sinusoidal suction velocity distribution is

studied. Due to variable suction velocity distribution the �ow becomes three-dimensional

and for constant suction the problem becomes two-dimensional. The free stream velocity is

uniform and for small perturbation approximation, analytic technique is applied to obtain

the expressions for velocity �eld and components of skin friction. The e¤ect of second-grade

parameter, Reynolds number and suction parameter on the velocity in the direction of main

�ow and on the stress components is investigated with the help of graphs. The existence of

back�ow is observed and it is noted that the Reynolds number and suction parameter are

controlling parameters for the back�ow.

Keywords: Di¤erential type �uids; Three-dimensional �ows; Periodic suction; Regular

perturbation method; Series solutions

1 Introduction

The research area of laminar �ow control has received attention of many investigators in re-

cent years and this research area is continuously growing. One of the important applications

of laminar �ow is the calculation of friction drag of bodies in a �ow i.e. the drag of a plate

at zero incidence, an airfoil and the friction drag. The main purpose is to reduce drag and

hence to improve the vehicle power by a considerable amount. The transition from laminar

to turbulent �ow which results the drag coe¢ cient to increase, may be prevented or deferred

by the suction of �uid and heat transfer from boundary layer to the wall [1]. Gersten et

al. [2] have investigated the e¤ect of transverse sinusoidal suction velocity on �ow and heat

transfer along an in�nite porous wall. Singh et al. [3] investigated the �ow of viscous incom-

pressible �uid along an in�nite porous plate when the transverse sinusoidal suction velocity
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distribution �uctuating with time is applied. Also Singh et al. [4] have examined the e¤ect

of buoyancy forces on three-dimensional �ow and heat transfer along with porous vertical

plate. Singh [5] extended this idea by applying transverse sinusoidal suction velocity in the

presence of viscous dissipative heat. Singh et al. [6] studied the e¤ects of magnetic �eld

on the three-dimensional �ow past a porous plate. Transient three-dimensional viscous �uid

�ow along a porous plate has been studied by Singh et al. [7] while Guria et al. [8] have

presented hydrodynamics e¤ect on the three-dimensional �ow past a vertical porous plate.

Gupta et al. [9] observed MHD e¤ect on the three-dimensional �ow past a porous plate.

All the above problems have been investigated in viscous �uid. Although the Navier�

Stokes equations can manage the �ows of viscous �uids but such equations are not adequate

to describe the properties of non-Newtonian �uids. Other than viscous �uids there is not

a single model which can describe the properties of all non-Newtonian �uids. Therefore,

several constitutive relationships of non-Newtonian �uids have been proposed. Generally,

non-Newtonian �uids have been classi�ed into three main categories namely the di¤erential,

rate and integral types. Second-grade �uid is the simplest subclass of di¤erential type �uids.

The aim of present study is to discuss three-dimensional �ow of a second-grade �uid

along a plane wall which is subjected to the sinusoidally varying velocity distribution. A

constant suction velocity at the wall leads to two-dimensional asymptotic suction solution

[10], however, due to variation of suction velocity in transverse direction on wall the problem

becomes three-dimensional. The regular perturbation method is employed for the solution of

the present problem. The results obtained are evaluated for di¤erent values of dimensionless

parameters such as non-Newtonian elastic parameter K; Reynolds number Re and suction

parameter �: The article is organized as follows: Section 2 presents the problem description,

Section 3 describes the formulation of the problem, Section 4 gives perturbation solutions,

Section 5 incorporates results and discussion, while Section 6 includes conclusion.

2 Description of the problem

Consider the three-dimensional laminar �ow of an incompressible second-grade �uid past an

in�nite plane wall. A Cartesian coordinate system with the wall lying on xz-plane and the

y-axis normal to it is introduced. A suction velocity distribution [2] consisting of a basic

steady distribution (v0 > 0) with a superimposed weak transversely varying distribution
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�v0 cos
�
� z
l

�
; where l denotes the wave length of the periodic suction velocity distribution

and � the amplitude of the suction velocity variation, is taken. Thus,

v(z) = �v0
�
1 + " cos �

z

l

�
: (1)

The constant suction velocity v0 at the wall leads to the well known two-dimensional

asymptotic suction solution [10] while varying suction velocity distributions lead to a cross

�ow and hence to a three-dimensional �ow over the surface. All the physical quantities will

be independent of x because of the in�nite length of the wall in the x-direction, of course,

the �ow remains three-dimensional due to variation of suction velocity.

Fig.1 Geometry of the problem

3 Formulation of the problem

Consider the three-dimensional laminar �ow of an incompressible second-grade �uid past an

in�nite wall , with the x-axis on the wall parallel to the direction of �ow. We applied suction

velocity distribution [2] of the form v(z) = �v0(1+ � cos � zl ), where (v0 > 0) , l and � are the

suction velocity, wave length of the periodic suction velocity distribution and amplitude of

the suction velocity distribution. As we have considered asymptotic �ow, therefore velocity

�eld is independent of x. In case of constant suction we have well-known two-dimensional

asymptotic suction solution and variable suction velocity distribution leads to cross-�ow

which results in three-dimensional �ow.
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The constitutive expression for second-grade �uid model is

T = �pI+ �A1 + �1A2 + �2A
2
1; (2)

in which p; I; �; �i (i = 1; 2) denote the pressure; the identity tensor; the dynamic viscosity

and material constants respectively. The Rivlin-Ericksen tensors A1 and A2 are de�ned as

A1 = L+LT ;

A2 =
dA1

dt
+A1L+ L

TA1;

L = rV; (3)

where r is the operator, V is the velocity �eld. For the model (2) required to be compatible

with the thermodynamics in the sense that all motions satisfy the Clasius-Duhen inequality

and assumption that the speci�c Helmholtz free energy is a minimum in equilibrium, then

the material parameters must meet the following conditions [11]

� � 0; �1 � 0 and �1 + �2 = 0: (4)

The laws of conservation of mass and momentum for the present �ow problem are given

by
@v�

@y�
+
@w�

@z�
= 0; (5)

�

�
v�
@u�

@y�
+ w�

@u�

@z�

�
= �

�
@2u�

@y�2
+
@2u�

@z�2

�
+�1

�
v�
@3u�

@y�3
+ w�

@3u�

@y�2@z�
+ v�

@3u�

@y�@z�2
+ w�

@3u�

@z�3

�
; (6)

�

�
v�
@v�

@y�
+ w�

@v�

@z�

�
= �@p

�

@y
+ �

�
@2v�

@y�2
+
@2v�

@z�2

�

+�1

26664
v� @

3v�

@y�3
+ w� @3v�

@y�2@z�
+ v� @3v�

@y�@z�2
+ w� @

3v�

@z�3
+ @v�

@z�
@2v�

@y�@z�

+@u�

@z�
@2u�

@y�@z� + 5
@v�

@y�
@2v�

@y�2
+ @v�

@z�
@2w�

@y�2
+ 2@u

�

@y�
@2u�

@y�2

+2@w
�

@y�
@2w�

@y�2
+ @u�

@y�
@2u�

@z�2
+ @v�

@y�
@2v�

@z�2

37775 ;(7)

�

�
v�
@w�

@y�
+ w�

@w�

@z�

�
= �@p

�

@z�
+ �

�
@2w�

@y�2
+
@2w�

@z�2

�

+�1

26664
w� @

3v�

@y�3
+ v� @

3w�

@y�3
+ v� @3w�

@y�@z�2
+ w� @

3w�

@z�3
+ @w�

@y�
@2w�

@y�@z�

+@u�

@y�
@2u�

@y�@z� + 5
@w�

@z�
@2w�

@z�2
+ @w�

@y�
@2v�

@z�2
+ 2@u

�

@z�
@2u�

@z�2

+2@v
�

@z�
@2v�

@z�2
+ @u�

@z�
@2u�

@y�2
+ @w�

@z�
@2w�

@y�2

37775 ;(8)
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with the boundary conditions [2]

u� = 0; v� = �v0(1 + � cos �
z�

l
); w� = 0 at y� = 0;

u� = U; v� = �v0; w� = 0; p� = p�1 as y� !1; (9)

in which u�; v� and w� denote the velocities in the x�-, y�- and z�-directions, respectively.

We now introduce the following non-dimensional variables [9]:

y =
y�

l
; z =

z�

l
; u =

u�

U
; v =

v�

U
; w =

w�

U
; p =

p�

�U2
: (10)

Then the Eqs. (5)� (9) become

@v

@y
+
@w

@z
= 0; (11)

v
@u

@y
+ w

@u

@z
=

1

Re

�
@2u

@y2
+
@2u

@z2

�
+K

�
v
@3u

@y3
+ w

@3u

@y2@z
+ v

@3u

@y@z2
+ w

@3u

@z3

�
; (12)

v
@v

@y
+ w

@v

@z
= �@p

@y
+
1

Re

�
@2v

@y2
+
@2v

@z2

�

+K

26664
v @

3v
@y3
+ w @3v

@y2@z
+ v @3v

@y@z2
+ w @3v

@z3
+ @v

@z
@2v
@y@z

+@u
@z

@2u
@y@z

+ 5@v
@y
@2v
@y2
+ @v

@z
@2w
@y2

+ 2@u
@y

@2u
@y2

+2@w
@y

@2w
@y2

+ @u
@y

@2u
@z2
+ @v

@y
@2v
@z2

37775 ; (13)

v
@w

@y
+ w

@w

@z
= �@p

@z
+
1

Re

�
@2w

@y2
+
@2w

@z2

�

+K

26664
w @3v
@y3
+ v @

3w
@y3

+ v @3w
@y@z2

+ w @3w
@z3

+ @w
@y

@2w
@y@z

+@u
@y

@2u
@y@z

+ 5@w
@z

@2w
@z2

+ @w
@y

@2v
@z2
+ 2@u

@z
@2u
@z2

+2@v
@z
@2v
@z2
+ @u

@z
@2u
@y2
+ @w

@z
@2w
@y2

37775 ; (14)

and the boundary conditions take forms

u = 0; v = v(z) = ��(1 + � cos �z
l
); w = 0 at y = 0;

u = 1; v = ��; w = 0; as y !1; (15)

where

Re =
Ul

�
; � =

v0
U
; K =

�1
�l2
: (16)
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4 Solution of the problem

Since � is very small, therefore we assume solution in such a way

F = F0 + �F1 + �
2F2 + � � � (17)

where F stands for any of u; v; w and p. For � = 0; the problem becomes two-dimensional,

so we have

K�
d3u0
dy3

� 1

Re

�
d2u0
dy2

�
+ �

du0
dy

= 0; (18)

subject to boundary conditions

u0 = 0; at y = 0;

u0 = 1 as y !1: (19)

The order of di¤erential equation is increased from 2 to 3 due to presence of elasticity

parameter. We are required three boundary conditions for unique solution of Eq. (18). To

remove this di¢ culty we assume the solution of the form

u0 = u00 +Ku01 +O(K
2); (20)

where K is very small parameter.

Using Eq. (20) in Eqs. (18)-(19) and comparing coe¢ cients of O(K0) and O(K), we get

the following boundary value problems:

d2u00
dy2

+ �Re
du00
dy

= 0;

u00 (0) = 0; u00 (1) = 1: (21)

�Re
d3u00
dy3

� d
2u01
dy2

� �Re
du01
dy

= 0;

u01 (0) = 0; u01 (1) = 0: (22)

Solving the boundary value problems (21) � (22) to obtain

u00(y) =
�
1� e��Rey

�
; (23)

u01(y) = � (�Re)3 ye��Ry: (24)
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Therefore, in view of Eqs. (23) and (24) ; Eq. (20) yields

u0(y) = 1� e��Rey �K (�Re)3 ye��Rey: (25)

When � 6= 0; the solution of the problem is obtained by the perturbation method

u = u0(y) + �u1(y; z) +O(�
2); (26)

v = v0 + �v1(y; z) +O(�
2); (27)

w = w0 + �w1(y; z) +O(�
2): (28)

Using Eqs. (26)-(28) into Eqs. (11)-(15) to obtain di¤erential equations corresponding

to �rst order terms
@v1
@y

+
@w1
@z

= 0; (29)

��@u1
@y

+ v1
@u0
@y

=
1

Re

�
@2u1
@y2

+
@2u1
@z2

�
+K

�
��@

3u1
@y3

� � @
3u1

@y@z2
+ v1

@3u0
@y3

�
; (30)

��@v1
@y

= �@p1
@y

+
1

Re

�
@2v1
@y2

+
@2v1
@z2

�
�K�

�
@3v1
@y3

+
@3v1
@y@z2

�
; (31)

��@w1
@y

= �@p1
@z

+
1

Re

�
@2w1
@y2

+
@2w1
@z2

�
�K�

�
@3w1
@y3

+
@3w1
@y@z2

�
; (32)

and the boundary conditions

u1 = 0; v1 = �� cos �
z

l
; w1 = 0 at y = 0;

u1 = 0; v1 = 0; w1 = 0; as y !1: (33)

The set of linear di¤erential equations (29)� (33) describe the three-dimensional �ow.

4.1 Cross �ow Solution

In this section the set of cross-�ow solutions v1(y; z); w1(y; z) and p1(y; z) are considered.

This set of solution is independent of the main �ow component u. The suction velocity

consists of basic uniform distribution v0 with a superimposed weak sinusoidal distribution

v0" cos (�z) ; therefore the velocity components v1(y; z); w1(y; z) and pressure p1(y; z) are

also separated into main and small sinusoidal components. Therefore, assume the following

forms for v1(y; z); w1(y; z) and p1(y; z):

v1(y; z) = v11(y) cos �z; (34)
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w1(y; z) = �
1

�
v
0

11(y) sin�z; (35)

p1(y; z) = p11(y) cos �z: (36)

In Eq. (35) the dash �0�denotes di¤erentiation with respect to �y�. We note that the

velocity components (34)� (35) identically satisfy the continuity equation (29) :

Substituting Eqs. (34) and (36) in Eqs. (31) and (32), we have

K�Re(v
000

11 � �2v
0

11)� v
00

11 + �
2v11 � �Rev

0

11 = �Rep
0

11; (37)

K�Re(v
0000

11 � �2v
00

11)� v
000

11 + �
2v

0

11 � �Rev
00

11 = Re�
2p11; (38)

and the boundary conditions are

v11(0) = ��; v
0

11(0) = 0: (39)

On eliminating the pressure p11 from Eqs. (37) and (38) we get the following di¤erential

equation:

K�Re

�
v
00000

11 � 2�2v
000

11 + �
4v

0

11

�
� v000011 � �Rev

000

11 + 2�
2v

00

11 + �
2�Rev

0

11 � �4v11 = 0: (40)

We assume

v11 = v110 +Kv111 +O(K
2); (41)

using Eq. (41) in Eq. (40) and solving resulting equation, we get the following solutions:

v110 =
��

(� � �)(�e
��y � �e��y); (42)

v111 =
����2Re(�+ �)
(�Re � 2�)(�� �)

(e��y � e��y � (� � �)ye��y); (43)

where

� =
�Re
2
+

s�
�Re
2

�2
+ �2:

Substitution of Eqs. (42) and (43) in Eq. (41), yields

v11 =
��

(� � �)(�e
��y � �e��y)�K ���2Re(�+ �)

(�Re � 2�)(�� �)
(e��y � e��y � (� � �)ye��y): (44)

Similarly from Eqs. (44) and (38), we get
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p11 =
���

� (�� �)

�
�� +K

�2(�+ �)

(2�� �Re)
�
K�Re�

4 �K�Re�2 � 2�3 � �Re�2
��
e��y

� ��

� (�� �)

26664
K��3 �K���2

+K �2(�+�)
(2���Re)

0@ 3K�Re�
4 � 4K�Re�3� �K�Re�2 + 2K�Re��

+2�3 � 3�2� � �Re�2 � 2�Re�� + �3

1A
37775 e��y

+K
�2(�+ �)

(2�� �Re)

24 �K�Re�4 (�� �) +K�Re�2�2 (�� �)

��3 (�� �) + �Re�2 (�� �) + ��2 (�� �)

35 ye��y (45)

Substituting Eqs. (44) and (45) in Eqs. (34)-(36), we get

v1(y; z) =
��

(� � �)

24 (�e��y � �e��y) +K ���Re(�+�)
(2���Re) (e

��y � e��y

�(� � �)ye��y)

35 cos �z; (46)

w1(y; z) =
���
(� � �)

24 (e��y � e��y) +K �Re(�+�)
(2���Re) (�(e

��y � e��y)

��(� � �)ye��y)

35 sin �z; (47)

p1(y; z) =
���

� (�� �)

�
�� +K

�2(�+ �)

(2��Re)
�
K�Re�

4 �K�Re�2 � 2�3 � �Re�2
��
e��y cos �z

� ��

� (�� �)

26666664
K��3 �K���2

+K �2(�+�)
(2���Re)

0BBB@
3K�Re�

4 � 4K�Re�3�

�K�Re�2 + 2K�Re�� + 2�3

�3�2� � �Re�2 � 2�Re�� + �3

1CCCA

37777775 e
��y cos �z

+K
�2(�+ �)

(2�� �Re)

26664
�K�Re�4 (�� �)

+K�Re�
2�2 (�� �)� �3 (�� �)

+�Re�
2 (�� �) + ��2 (�� �)

37775 ye��y cos �z: (48)

The Eqs. (46) and (47) present the cross-�ow velocity distribution and pressure in Eq.

(48) provide the input for the solution to the axial velocity. The viscous results [2] are

recovered when K ! 0:

4.2 Main �ow solution

The solution for the Eq. (30) can be expressed as

u1(y; z) = u11(y) cos �z: (49)
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The corresponding boundary conditions (33) are reduced to

u11 = 0 at y = 0;

u11 = 0 as y !1: (50)

Further we assume that

u11 = u110 +Ku111 +O(K
2): (51)

Then the boundary conditions (50) yield

u111 = u110 = 0 at y = 0;

u111 = u110 = 0 as y !1: (52)

Using Eqs. (25) ; (46) and Eqs. (49)-(52) in Eq. (30), we get

u1(y; z) =
�Re
(� � �)

�
A1e

��y � A2e�(�+�Re)y + A3e�(�+�Re)y
�
cos �z

+
K (�Re)

2

(� � �)

��
E2

2��Re
+

E3
��Re

+ E4 + E6

�
e��y �

�
E1

�Re � 2�

�
ye��y

�
cos �z

�K (�Re)
2

(� � �)

24 � E2
2��Re

+ E4

�
e�(�+�Re)y +

�
E3
��Re

+ E6

�
e�(�+�Re)y

+E5ye
�(�+�Re)y + E7ye

�(�+�Re)y

35 cos �z;(53)
where

A1 =

�
�

2�
� �
�

�
; A2 =

�

2�
; A3 =

�

�
; E1 =

�
�3 � ��2

�� �
2�
� �
�

�
;

E2 = �2�2R2e� +
�(�+ �)

2�� �Re
� �(�+ �Re)

3

2�
+
�3(�+ �Re)

2�
;

E3 = 2 (�Re)
2 �� �(�+ �)

2�� �Re
+
�(� + �Re)

3

�
� ��(� + �Re);

E4 =
2�+ �Re

4�2 (�Re)
2

 
� (��Re)

2

2�� �Re
+ � (�Re)

3

!
; E5 =

1

2��Re

 
� (��Re)

2

2�� �Re
+ � (�Re)

3

!
;

E6 =
2� + �Re

�2 (�Re)
2

�
�� (�Re)3

�
; E7 =

1

��Re

�
�� (�Re)3

�
:

Substituting Eqs. (25) and (53) in Eq. (26) ; we get
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u(y; z) = 1� e��Rey �K (�Re)3 ye��Rey + "
�Re
(� � �)

�
A1e

��y � A2e�(�+�Re)y + A3e�(�+�Re)y
�
cos �z

+"
K (�Re)

2

(� � �)

��
E2

2��Re
+

E3
��Re

+ E4 + E6

�
e��y �

�
E1

�Re � 2�

�
ye��y

�
cos �z

�"K (�Re)
2

(� � �)

24 � E2
2��Re

+ E4

�
e�(�+�Re)y +

�
E3
��Re

+ E6

�
e�(�+�Re)y

+E5ye
�(�+�Re)y + E7ye

�(�+�Re)y

35 cos �z; (54)

It should be noted that the limiting velocity u1 as K ! 0, di¤ers from that computed

by Gersten and Gross [2]. This is due to some calculation mistake in their work.

4.3 Shear stress components

The expressions for the shear stress components in the x-direction and z-direction can be

expressed as follows:

Cfx =
(@u
@y
)y=0

�Re
= F0 + � cos �z � �F1(Re) cos �z; (55)

and

Cfz =
�(@w

@y
)y=0

�

= ��F2(Re) sin�z: (56)

The functions F1(Re) and F2(Re) are given by

F1(Re) =
(�+ �)�

2�2
� KR

(� � �)

�
��
�

E2
2��Re

+
E3
��Re

+ E4 + E6

�
� E1
�Re � 2�

+ (�+�Re)E2
2��Re

+ (�+�Re)E3
��Re

+(�+ �Re)E4 � E5 + (� + �Re)E6 � E7

35 : (57)

It is worth mentioning that the skin friction factor F1 (Re) whenK ! 0 reduces to steady

state value of [7]. It is also indicated that limiting result as K ! 0 di¤ers from that found

by Gersten and Gross [2]. This happens due to some calculation mistake in their work.

F2(Re) = �

 
1 +K

� (�Re)
2

�Re � 2�

!
: (58)
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The limiting result of F2(Re) as K ! 0 is identical to that obtained by Gersten and Gross

[2] and steady state value presented by Singh et al. [7].

5 Results and discussion

The e¤ects of dimensionless parameters such as elastic parameter K, Reynolds number Re

and suction parameter � on velocity component u are shown in Figs. (2)� (4) : Skin friction

factors F1(Re); F2(Re) are presented graphically in Figs. (5)� (8). Fig. (2) shows that the

velocity component u decreases with the increase of dimensionless parameter K which was

expected naturally. For a particular value of K, the velocity component u increases gradually

to attain maximum value equal to unity. The Fig. (3) shows the e¤ect of Reynolds number

Re on the main �ow velocity component u. It is observed from this �gure that velocity is

increasing function of Re: However, velocity decreases in the vicinity of the plate. Moreover,

back�ow is observed for Re > 30: The in�uence of suction parameter � on the velocity

component u is demonstrated in Fig. (4) : The main �ow velocity component u increases as

the suction parameter � increases which was expected naturally. However, it decreases near

the plate and then increases exponentially. Back�ow near the plate is observed for � > 0:3.

Furthermore, u! 1 as y !1:

The e¤ect of dimensionless parameters K and � on the shear stress component F1(Re)

are depicted in Figs. (5) and (6) respectively. The Fig. (5) shows that the shear stress

component F1(Re) increases with an increase in K: It decreases as Re increases from zero

to some value(depending upon K) of Re; then increases exponentially and tends to in�nity.

Similar e¤ect of � on F1 is noted in Fig. (6) : Of course, F1 tends to be linearized as �! 0:1:

Moreover, F1(Re)! 1 as Re ! 0:

The F2(Re) and its asymptotic limits are shown in Figs. (7) and (8). In Fig. (7) the

dimensionless parameter � is �xed andK is varied. In Fig. (8) the role of these dimensionless

parameters is interchanged. Fig. (7) shows great in�uence of elastic parameter on F2(Re)

which is decreasing function of elastic parameter K. Moreover, F2 increases as Re increases

from zero to some value(depending upon K) of Re; then decreases for higher values. It is

shown in Fig. (8) that F2(Re) initially increases and then decreases for any �x value of �:

Also, it can be perceived that F2 tends to linearized as �! 0:1. The Fig. (9) demonstrates

that the transverse wall shear stress, which results from the secondary �ow normal to the

12



main �ow direction, disappears due to symmetry at the points of maximum and minimum

suction velocity. The e¤ect of elastic parameter K and suction parameter � on the velocity

component w1 are tabulated in Table 1. It is observed that w1 increases as � increases.

However an opposite e¤ect of K on w1 is noted. It also decreases in the y-direction.

6 Conclusion

The three-dimensional incompressible laminar �ow of a second grade �uid past a wall is

analyzed. A suction with a slightly sinusoidal transverse suction velocity distribution at the

wall is employed. Approximate solutions for main �ow, cross �ow and pressure are presented.

For the asymptotic �ow condition far downstream the components of the wall shear stress

are computed. The major �ndings of the present study are as follow:

� When K increases the main �ow velocity u decreases. In the limiting case, when

y !1; it(main �ow velocity) approaches to unity

� When Re increases the main �ow velocity u also increases

� Shear stress components tend to be linearized as �! 0:1

� The shear stress components in the direction of main �ow F1(Re) and the function

F2(Re) which characterizes the wall shear stress in the z-direction, strongly depend

upon both elastic parameter K and suction parameter �

� Reynolds number Re and suction parameter � provide a mechanism to control the

back�ow

� When K ! 0; the viscous results for cross �ow [2] are recovered

� The limiting main �ow velocity u when K ! 0 di¤ers from that obtained by Gersten

and Gross [2] due to some calculation mistake in their work

� The steady state value of skin friction factor in main �ow direction [7] is recovered

when K ! 0: It, however, di¤ers from that obtained by Gersten and Gross due to

some computational mistake in their work

� The limiting result of F2(Re) as K ! 0 is identical to that obtained by Gersten and

Gross [2] and steady state value presented by Singh et al. [7]
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Fig. (2) Variation of u at � = 0:1; Re = 10; � = 0:1 and z = 0 for di¤erent values of K
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Fig. (3) Variation of u at � = 0:1; K = 0:1; � = 0:1 and z = 0 for di¤erent values of Re
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Fig. (4) Variation of u at K = 0:1; Re = 10; � = 0:1 and z = 0 for di¤erent values of �
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Fig. (5) Variation of F1(Re) at � = 0:1 for di¤erent values of K
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Fig. (7) Variation of F2(Re) at � = 0:1 for di¤erent values of K
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Fig:(9) Flow streamlines on the surface of the �at plate for K = 0:1 and � = 0:1

Table 1: E¤ects of K and � on transverse velocity component w for � = 0:1; z = �0:5 and

Re =10.

y K=0.1, �=0.1 K=0.1,�=0.3 K=0.1,�=0.5 K=0.5,�=0.1 K=0.5,�=0.3 K=0.5,�=0.5

0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.4 0.00765642 0.0229064 0.0379688 0.00720078 0.0186956 0.0259742

0.8 0.00425012 0.0120589 0.0188772 0.00399335 0.00973349 0.0123868

1.2 0.00176929 0.00475647 0.00701495 0.00166076 0.00379298 0.00437853

1.6 0.000654638 0.00166584 0.00230802 0.000613862 0.00131089 0.00135524

2.0 0.000227056 0.000546312 0.000708632 0.000212693 0.000423678 0.000385539
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