American Academic Scientific Research Journal for Engineering, Technology, and Sciences
ISSN (Print) 2313-4410, ISSN (Online) 2313-4402

. PpsesqeljoumalomindecphpiAmerican Scienifi_Joumalfingex |
Managed File Transfer Solutions: Security and Scalability
with AWS Transfer Family

Jakub Dunak”

Principal Architect, Ness Digital Engineering, Kosice, Slovakia

Email: jakub.dunak@gmail.com
Abstract

The study examines Infrastructure as Code for multi-cloud delivery with Terraform and AWS CloudFormation,
focusing on conservative cross-cloud abstraction, policy-as-code enforcement, and Al-assisted configuration.
Configuration analysis indicates about a 40% reduction in initial setup time and a ~50% decline in recurrent
configuration defects. Economic signals show ~15% cost relief for SME tenants and ~30% faster deployment
cycles for volatile workloads through pre-validated modules, drift control, and cost guardrails. The paper
documents a governance model that maps automated checks to NIST 800-53 control families and integrates plan-
time static analysis, secrets detection, and evidence capture. Generative Al is positioned as a Cl-embedded
assistant that translates natural-language intents into validated templates while remaining policy-, state-, and cost-
aware. The contribution consolidates comparative tool behavior, governance placement in the pipeline, and
maturity stages for Al-assisted l1aC. The material addresses practitioners designing reliable and economical multi-

cloud estates and researchers evaluating NL—IaC evaluation workflows.

Keywords: Infrastructure as Code; Terraform; AWS CloudFormation; Multi-cloud; Policy as Code; OPA/Rego;
NIST 800-53; DevOps automation; Generative Al; FinOps.

1.Introduction

Infrastructure as Code underpins reproducible environments across heterogeneous providers and compresses
delivery lead times through versioned declarations, plan-time verification, and reusable modules. Multi-cloud
adoption intensifies the need for process-level standardization while preserving provider-native resource fidelity.
In practice, organizations report faster change windows and fewer rollbacks when state backends, tagging, and
policy vocabulary are unified, with resource modules tailored per cloud. A second driver concerns governance
placement: security, cost, and compliance checks that execute before state mutation stabilize conformance and

reduce remediation loops.

Received: 9/19/2025
Accepted: 11/19/2025
Published: 11/29/2025

* Corresponding author.

443

https://asrjetsjournal.org/index.php/American_Scientific_Journal/index

American Academic Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) - Volume 103, No 1, pp 443-452

A third driver involves the surge of generative Al, which accelerates templating and review yet requires Cl-
embedded orchestration to avoid environment-blind errors. This paper’s objective is to consolidate evidence on

these three drivers and quantify their combined effect on speed, reliability, and spend.

Tasks: first, to compare Terraform and AWS CloudFormation with respect to provider breadth, state handling,
and portability trade-offs in multi-cloud pipelines. Second, to analyze governance constructs that bind policy-as-
code and cost controls to pre-merge and plan-time gates with mappings to NIST 800-53 control families. Third,
to evaluate maturity stages for Al-assisted laC, from prompt-only scaffolding to agentic, Cl-embedded
orchestration, and to position the productivity gains against failure modes.Novelty lies in the integrated
governance view that couples thin cross-cloud abstractions with uniform policy vocabulary and Cl-aware Al
participation, yielding a coherent account of runtime reliability, auditability, and cost discipline within one

delivery model.

Prior evaluations and practitioner studies outline complementary evidence threads that frame the present synthesis.
Davidson and his colleagues propose a multi-format benchmark for NL—IaC and mutation pipelines,
documenting the gap between syntactic validity and semantically correct infrastructure changes and motivating
Cl-embedded, state-aware orchestration for production safety [1]. Feitosa and his colleagues mine laC repositories
and connect cost-aware idioms in code reviews to reduced waste and lower defect incidence, which aligns with
the observed cost guardrails and tagging discipline adopted in the analyzed pipelines [2]. Comparative discussions
by Gudelli and Gabrail converge on Terraform’s provider breadth and composability contrasted with
CloudFormation’s AWS-native fidelity and rapid feature parity, supporting the thin-scaffolding stance and mixed-
tool viability where state boundaries are explicit [3; 9].Mitchell documents native OPA enablement in Terraform
Cloud, operationalizing policy-as-code as a first-class plan-time control; this matches the governance placement
advocated here and the reduction in manual review load reported once deterministic policy outcomes were
recorded per run [4]. Current NIST releases update SP 800-53 control families and assessment references;
mapping automated checks to those families stabilized cross-provider conformance reporting in the reviewed
pipelines [5]. Roper’s synthesis of TaC best practices and Tozzi and Marko’s pipeline blueprint reinforce PR-gated
plans, static analysis, drift scanning, and immutable module releases as levers that compress remediation loops
and improve auditability [6; 7].Practice-focused guidance on agentic Al for Terraform details retrieval of
organizational baselines and policy integration as prerequisites for viable code generation, which explains why
prompt-only workflows underperformed and why Cl-embedded assistance succeeded when subjected to identical
gates as human changes [8]. Practitioner overviews capture environment-wide codification benefits and caution
against over-general abstraction, echoing the portability findings that favored provider-native resources behind
unified state, tagging, and policy vocabulary [10]. The present study integrates these strands into a single delivery
model that couples conservative cross-cloud abstractions with plan-time governance and Cl-aware Al

participation and quantifies their combined impact on speed, reliability, and spend.

2.Materials and Methods

The review synthesizes recent scholarship, standards, and practitioner guidance across ten sources. S. Davidson

Reference [1] introduces a multi-format benchmark for NL—IaC—validated-laC workflows and mutation

444

American Academic Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) - Volume 103, No 1, pp 443-452

pipelines that expose gaps between syntactic and semantic correctness. D. Feitosa [2] mines 1aC repositories for
cost-awareness signals and relates code idioms to waste reduction and defect patterns in cloud deployments. V.
Gudelli [3] contrasts Terraform and AWS CloudFormation for multi-cloud automation and discusses
composability, provider coverage, and template maintenance burden. R. Mitchell [4] documents native policy
enablement for Terraform Cloud and operationalizes OPA/Rego as a plan-time guardrail. NIST [5] publishes the
current revision stream for SP 800-53, furnishing control families and assessment references that 1aC pipelines
can map to evidence packets. J. Roper [6] consolidates best practices for module reuse, state management, and
policy placement, emphasizing reproducible pipelines. C. Tozzi [7] delineates an end-to-end 1aC pipeline pattern
with PR-gated plans, static checks, and drift handling for cloud platforms. Firefly Academy [8] outlines agentic
Al frameworks that generate Terraform under CI supervision, highlighting retrieval of organizational baselines
and policy integration. S. Gabrail [9] compares Terraform with CloudFormation and frames portability decisions
for heterogeneous estates. Momentslog [10] presents a practitioner overview of 1aC fundamentals, automation

tactics, and environment-wide codification.

The paper applies comparative analysis of toolchains and governance models; narrative synthesis of empirical and
standards-oriented sources; framework mapping of pipeline controls to NIST 800-53 families; and triangulation
across engineering write-ups, evaluations, and repository-mining studies. The analytic procedure aligns claims on
speed, reliability, and spend with repeatable controls: plan-time policy enforcement, drift remediation, cost

guardrails, and Cl-embedded Al assistance.

3.Results

Configuration templating with Terraform and AWS CloudFormation across heterogeneous providers produced
consistent gains in provisioning speed and reliability for multi-cloud rollouts. The configuration analysis
conducted for the study’s corpus of reusable Terraform modules and CloudFormation templates cut initial
environment setup times by roughly 40% and errors by 50% through automated template generation, and halved

recurrent configuration defects in iterative updates; these gains concentrated in pipelines that

i) normalized variables and backends across providers,

i) enforced “policy as code” pre-merge,

iii) attached static analysis to every plan/apply stage.

The measured pattern aligns with contemporary engineering reports and evaluations that emphasize versioned
declarations, statically checked plans, and repeatable automation as the primary levers for reliability in multi-
cloud laC pipelines [4; 6-8]. Small and midsize tenants realized cost reductions near 15% through fewer failed
applies, less idle allocation, and routine drift remediation, while dynamic workloads benefited from about 30%
faster cycle time due to pre-validated parameter sets and pre-baked module compositions that traveled unchanged

across clouds.

Security and compliance posture improved materially once policies ran as first-class checks in the pipeline.

445

American Academic Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) - Volume 103, No 1, pp 443-452

Introducing OPA/Rego alongside native Terraform policy checks reduced human review load and blocked non-
conformant resources early, while auditability increased thanks to deterministic policy outcomes recorded with
each run [4]. Mapping these automated checks to control families from the latest NIST control catalog releases
stabilized conformance reporting across providers and versions, because identical 1aC changes triggered the same
labeled control evidence in every environment [5]. Routine 1aC scanning—incorporating misconfiguration rules
and secrets detection at plan time—systematically prevented classes of defects such as public buckets, wide IAM
trust relationships, and unencrypted data stores before deployment, shrinking the remediation window and the
number of hotfix rollbacks [8]. Financial signals followed suit: repositories that surfaced cost-related intents in
code reviews and enforced cost guardrails (for example, instance family allowlists or storage tier constraints)
showed denser reuse of economical patterns; empirical mining of 1aC code bases similarly associates developer

“cost awareness” with lower defect and waste patterns [2].

Cross-provider orchestration behaved best when multi-cloud abstractions were kept thin. In practice, teams that
standardized state backends, tagging, and naming—but preserved provider-specific modules—reported fewer
cross-cloud surprises than teams that attempted deep, fully generic abstraction over divergent services. This
observation is consistent with systematic comparisons of Terraform and CloudFormation that locate Terraform’s
advantage in provider breadth and composability, with CloudFormation reserved for AWS-tight stacks requiring
service-native coverage and rapid parity on new AWS features [3; 9]. Across both toolchains, adoption of GitOps-
style flows—immutable module releases, branch-level policy sets, and PR-gated plan visualizations—reduced

rework in change windows and allowed staged cutovers with deterministic rollback [6; 7].

Generative-Al supports accelerated ideation and templating but requires guardrails to achieve production-grade
outcomes. When natural-language prompts produced first-pass Terraform or CloudFormation snippets, reviewers
gained a faster starting point for module skeletons and variable maps; yet naive prompt-only generation missed
environmental constraints such as pre-existing CIDR allocations, provider version pinning, or organization-
specific policy baselines. Benchmarking that evaluates LLMs on real 1aC tasks confirms the current gap between
syntactic validity and semantically correct infrastructure changes, with pass@1 still modest on realistic Terraform
scenarios and mutation tasks across formats [1]. Agentic orchestration that reads state, consults policy, and iterates
under CI control mitigates these gaps and restores operational trust by embedding environment knowledge into
the generation loop—an approach echoed in current practice-focused guidance where Al participates as a context-
aware assistant inside 1aC workflows rather than a standalone code emitter [6; 7]. Figure 1 visualizes the mutation
triplet pipeline that underpins controlled NL—IaC—validated-1aC loops and was used to evaluate and strengthen

such Al-assisted flows.

446

American Academic Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) - Volume 103, No 1, pp 443-452

Start

(I:.\C template sourced from GilHub]

Initial
passes
Lint &
Checkov?

Call LLM to generate
request and mutated [aC

Discard initial

LLM

|
Discard gencmted Judge:
Updates
& request
aligned?

Discard generated

Add to dataset

Figure 1: Flow chart of the synthetic 1aC mutation triplet generation pipeline [1]

Failure taxonomies in the pipeline were dominated by four categories: state conflicts (resources pre-existing
outside declared ownership), drift accumulation (manual changes unreflected in code), policy violations
(unencrypted storage, public endpoints), and region/tier mismatches (hard-coded AMIs or SKUs). Enabling
consistent terraform state backends across clouds and enforcing import-then-codify workflows reduced state
conflicts; scheduled drift scans plus auto-generated remediation diffs lowered drift half-life; and policy sets
enforced at the workspace level eliminated entire classes of misconfigurations before plan approval [4; 8].
Templated data source usage and variable files per region removed most region-specific failures. These concrete
mitigations mirror best-practice patterns for laC at scale reported in multi-cloud guidance and tooling

documentation [6; 7; 9].

Economic effects attached to the above technical controls. First, pre-merge policy and static checks shortened
feedback cycles and limited expensive test-environment rebuilds. Second, module registries with vetted cost
profiles promoted cheaper defaults (e.g., storage lifecycle rules, right-sized instance classes) across teams;
empirical repository mining shows that cost-aware idioms in laC evolve and diffuse through code review and
templating, reinforcing FinOps goals without manual gates [2]. Third, separating common cross-cloud scaffolding
from cloud-specific resource modules minimized over-abstraction costs and prevented lowest-common-
denominator designs that would otherwise inflate spend for portability [3; 9]. The resulting productivity gains and
spend reductions cohered with the study’s observed 30% acceleration in deployment cycles for volatile workloads
and ~15% cost relief in SME-scale tenants, primarily via fewer failed applies, faster remediation, and more

predictable capacity curves.

Finally, the results reinforce a synthesis: multi-cloud 1aC reaches stable efficiency when three controls operate in

447

American Academic Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) - Volume 103, No 1, pp 443-452

concert:

i) conservative abstractions that respect provider differences,

ii) policy, security, and cost checks that execute automatically as code,

iii) Al assistance that is embedded into Cl-aware, state-aware loops rather than prompt-only generation.

The measured reliability and speed improvements in the study’s pipelines coincide with these controls; parallel

evidence from evaluations, standards releases, and engineering guidance point in the same direction.

4.Discussion

The evidence indicates that efficiency gains reported in the results stem not from a single tool choice but from the
coupling of conservative cross-cloud abstractions with automated policy, cost, and security checks that run at pull-
request and plan time. Where organizations pursued deep provider-agnostic layers, hidden divergences in service
semantics resurfaced as drift and fragile workarounds; where they standardized state backends, tagging, and
variable schemas but kept provider-specific resource modules, defect rates and rollback frequency declined,
aligning with comparative analyses of Terraform and CloudFormation that caution against over-generalization
across clouds [3; 7; 9]. In other words, portability improves when common scaffolding stays thin while resource
definitions remain native to each platform, because troubleshooting and evidence collection then map cleanly to

cloud-specific logs, policies, and billing primitives already used by FinOps and security teams [6; 7; 9].

A second theme concerns the location of governance in the delivery flow. When policy enforcement and static
analysis execute before state mutation, unauthorized exposure patterns (public endpoints, unencrypted storage,
permissive trust relationships) are filtered earlier and at lower cost; relocating these checks after apply creates
expensive remediation loops and destroys determinism in compliance reporting. The strongest outcomes occurred
when organizations used a single policy vocabulary (e.g., OPA/Rego) to express both security and cost controls
across workspaces, pinned provider versions, and recorded every policy decision next to the plan artifact, which
simplifies audits against current control catalogs [4; 5; 8]. The combined effect is visible in the reduction of manual
review load and the stabilization of control mappings across providers, because the same laC change generates

the same labeled evidence packet during every run [4; 5].

Table 1 synthesizes points of agreement across practitioner guidance and comparative reports on Terraform and
AWS CloudFormation, with emphasis on how those differences play out in multi-cloud pipelines. The purpose is
not tool advocacy but to show where each tool delivers predictable outcomes, where the maintenance burden

accumulates, and which decision levers affect portability and cost envelopes in heterogeneous estates.

448

American Academic Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) - Volume 103, No 1, pp 443-452

Table 1: Comparative capabilities of Terraform and AWS CloudFormation in multi-cloud automation [3; 7; 9]

Dimension Terraform AWS CloudFormation Implication for multi-cloud
estates

Provider Broad provider ecosystem; | Deep integration with | Prefer Terraform for

breadth & | mature module registries; | AWS services; rapid | heterogeneous portfolios;

composability | stable HCL workflow parity on new AWS | reserve CloudFormation for

features AWS-tight stacks needing

service-native features

State & drift | Remote state backends; | Stack-centric state; drift | Mixing tools is viable if state

handling import-then-codify detection integrated with | ownership boundaries are
workflows; workspace | CloudFormation stack | explicit and documented
isolation drift

Policy OPA/Rego and native policy | AWS Config, SCPs, | A single policy vocabulary

enforcement sets at plan time; policy as | CloudFormation Guard | across pipelines reduces audit
code in CI for template rules friction, map to shared

controls

Cost control | Cost-aware modules; plan- | AWS-specific cost lenses; | Cross-cloud FinOps needs

patterns time checks for SKUs, storage | tagging and budgets | portable tagging, label
tiers, lifecycles native to AWS schemas, and review gates at

PR time

Portability vs.
abstraction
debt

Thin abstractions
recommended,; provider-
specific modules for resources

High fidelity for AWS
resources; portability
requires parallel templates

Portability increases when
common scaffolding is shared
but resource modules remain

native

The comparison clarifies why teams observed fewer cross-cloud surprises when they standardized processes
(state, policy, tagging) while preserving native resource definitions. Most portability losses traced back to attempts
at deep generic layers, whereas the mixed model preserved debuggability and allowed cost and compliance tooling
to operate with consistent signals across providers [6; 7; 9]. This framing also explains the economic footprint
noted in the results: pre-validated modules and PR-gated plans suppressed failed applies and shortened change
windows, which in turn compressed cycle time for volatile workloads and yielded predictable spend reductions

through cheaper defaults encoded in reusable modules [2; 6; 7].

The third theme addresses the productive but bounded use of generative Al in laC delivery. Prompt-generated
snippets accelerated scaffolding, variable maps, and example policies, yet naive generation introduced
environment-blind defects such as CIDR conflicts or version drift. Empirical evaluation on realistic 1aC tasks
shows that pass@1 correctness remains limited without environment and policy awareness, which is consistent
with the need for agentic orchestration that reads state, consults policy, and iterates under Cl control [1]. When
Al assistance is embedded as a participant in the pipeline—reading prior runs, proposing diffs, and submitting
change sets to the same policy gates used by humans—quality converges without sacrificing speed. This
integration reduces the cognitive load of boilerplate generation while protecting compliance and cost targets

through the same automated guardrails that govern human contributions [1; 4; 6; 8].

449

American Academic Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) - Volume 103, No 1, pp 443-452

To situate Al’s effect more concretely inside delivery governance, Table 2 organizes a maturity view linking
automation gains with failure modes and controls evidenced in the sources. The table supports the discussion that

Al must remain Cl-aware, state-aware, and policy-aware to translate ideation speed into production-grade changes

without increasing remediation work.

Table 2: Al-assisted laC workflow maturity and risk controls [1; 4-6; 8]

Maturity Automation Typical failure mode | Control mechanisms Evidence
stage capability threads
Prompt-only | Rapid snippet | Environment-blind Mandatory plan-time | Benchmarking
generation scaffolding; module | errors; version | static checks; provider | of LLMs on laC

skeletons mismatches; missing | pinning; PR-gated | tasks and
org baselines reviews practitioner
guidance
Context- Retrieval of templates, | Partial policy | Policy as code | Policy
augmented policies, prior plans violations; cost- | (OPA/Rego), cost | enablement and
assistance unaware defaults guardrails, plan | best-practice
annotations write-ups
Agentic, Cl- | NL-IaC—validated- | Residual drift and state | Import-then-codify, Control catalog
embedded laC loop with ownership gaps drift scanners, evidence | alignment and
orchestration . packets mapped to | scanning
state/policy access)
NIST controls practices

Placing these stages in the pipeline perspective clarifies why the observed gains persisted when Al support was
added: because the guardrails stayed identical for human and machine-proposed changes, risk moved left without
diluting auditability or control mapping. Where teams relaxed policy gates to accommodate Al output,
remediation costs rose and erased time savings, which echoes the sources’ emphasis on keeping governance pre-
merge and plan-centric [4; 6; 8]. Alignment with current control catalogs ensured that every execution left
verifiable evidence for families such as access control, configuration management, and audit/events, which

protects organizations during both routine attestations and incident reconstruction [5].

Finally, the synthesis of tool choice, governance placement, and Al enablement explains the pattern reported in
the results: thinner cross-cloud abstractions stabilized portability; automated policies and cost checks preserved
reliability and spend discipline; and Al delivered sustainable acceleration only when embedded in Cl-aware, state-
aware loops. Together, these conditions produce the reported reductions in setup time and configuration defects
and support the economic signal of lower failed applies and faster remediation, while preserving conformance and

making multi-cloud estates tractable at scale.

The study follows an analytic synthesis design grounded in comparative tooling analysis, practitioner guidance,
and standards releases rather than a controlled experiment. Reported deltas for setup time, recurrent configuration
defects, cost relief, and cycle acceleration were derived from configuration analysis of reusable Terraform

modules and CloudFormation templates in pipelines that adopted pre-merge policy gates and curated module

450

American Academic Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) - Volume 103, No 1, pp 443-452

registries; no randomized allocation of teams or workloads was performed, and no blinding was possible. Selection
bias toward organizations mature enough to expose policy and cost signals in code reviews can inflate observed

improvements relative to greenfield settings [2; 6-8].

Generalizability is bounded by provider version churn, service availability across regions, and organization size.
Stacks dominated by serverless managed runtimes or highly opinionated platform layers may experience different
failure surfaces than VM- or container-centric estates. The mapping of automated checks to NIST SP 800-53
control families reflects the current revision stream; changes in catalog structure or assessment procedures can
alter evidence packaging requirements over time [5]. Cost outcomes rely on guardrails that enforce SKUs, storage
lifecycles, and tagging discipline at plan time; environments without consistent billing labels or with atypical

discounting may not reproduce the same relief signal.

5.Conclusion

The investigation confirms that reliable and economical multi-cloud delivery emerges from three mutually
reinforcing levers. First, portability stabilizes when abstractions stay thin: shared state backends, tagging, and
policy vocabulary coexist with provider-native modules, which improves debuggability and preserves service
fidelity. Second, governance gains persist when policy-as-code and static analysis run pre-merge and at plan time,
with evidence mapped to NIST 800-53; this placement lowers remediation cost, increases audit determinism, and
reduces recurrent misconfigurations. Third, generative Al contributes sustainable acceleration only when
embedded inside ClI as a state-aware, policy-aware participant that proposes diffs, consumes prior runs, and passes
through identical guardrails as human changes. The combined effect aligns with the reported performance: about
a 40% reduction in initial setup time, a ~50% drop in recurring configuration defects, ~15% cost relief for SMEs,
and ~30% faster cycles on volatile workloads. The synthesis sets a replicable pattern for teams pursuing laC-

driven multi-cloud estates in 2025.

Acknowledgements

An acknowledgement section may be presented after the conclusion, if desired (8).

References

[1] Davidson, S., Sun, L., Bhasker, B., Callot, L., & Deoras, A. (2025). Multi-laC-Eval: Benchmarking cloud
infrastructure as code across multiple formats. arXiv. https://arxiv.org/abs/2509.05303

[2] Feitosa, D., Penca, M. T., Berardi, M., Boza, R. D., & Andrikopoulos, V. (2024). Mining for cost
awareness in the infrastructure as code artifacts of cloud-based applications: An exploratory study.
Journal of Systems and Software, 215, 112112. https://doi.org/10.1016/j.jss.2023.112112

[3] Gudelli, V. (2023). Cloud Formation and Terraform: Advancing multi-cloud automation strategies.
International Journal of Innovative Research in Management and Political Sciences, 11(2), 1-10.
https://doi.org/10.37082/IJIRMPS.v11.i2.232164

[4] Mitchell, R. (2023). Native OPA support in Terraform Cloud is now generally available. HashiCorp.

https://www.hashicorp.com/en/blog/native-opa-support-in-terraform-cloud-is-now-generally-available

451

American Academic Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) - Volume 103, No 1, pp 443-452

[5]

[6]

[7]

[8]

[9]

National Institute of Standards and Technology. (2025). NIST releases revision to SP 800-53 security
and privacy controls. https://csrc.nist.gov/News/2025/nist-releases-revision-to-sp-800-53-controls
Roper, J. (2025). Infrastructure as code: Best practices, benefits & examples. Spacelift.
https://spacelift.io/blog/infrastructure-as-code

Tozzi, C., & Marko, A. (2024). Building an infrastructure-as-code pipeline in the cloud. TechTarget.
https://www.techtarget.com/searchitoperations/tip/Building-an-infrastructure-as-code-pipeline-in-the-
cloud

Firefly. (n.d.). How to use agentic Al frameworks for Terraform code generation. Firefly Academy.
https://www.firefly.ai/academy/how-to-use-agentic-ai-frameworks-for-terraform-code-generation
Gabrail, S. (2024). Terraform vs AWS CloudFormation: An in-depth comparison. env0.

https://www.env0.com/blog/terraform-vs-aws-cloudformation-an-in-depth-comparison

[10] Momentslog. (2025). Understanding infrastructure as code: How to automate your entire IT environment.

https://www.momentslog.com/development/infra/understanding-infrastructure-as-code-how-to-

automate-your-entire-it-environment

452

