
 

443 

 

American Academic Scientific Research Journal for Engineering, Technology, and Sciences   

ISSN (Print) 2313-4410, ISSN (Online) 2313-4402 

 

https://asrjetsjournal.org/index.php/American_Scientific_Journal/index  

Managed File Transfer Solutions: Security and Scalability 

with AWS Transfer Family 

Jakub Dunak* 

Principal Architect, Ness Digital Engineering, Kosice, Slovakia 

Email: jakub.dunak@gmail.com 

Abstract 

The study examines Infrastructure as Code for multi-cloud delivery with Terraform and AWS CloudFormation, 

focusing on conservative cross-cloud abstraction, policy-as-code enforcement, and AI-assisted configuration. 

Configuration analysis indicates about a 40% reduction in initial setup time and a ~50% decline in recurrent 

configuration defects. Economic signals show ~15% cost relief for SME tenants and ~30% faster deployment 

cycles for volatile workloads through pre-validated modules, drift control, and cost guardrails. The paper 

documents a governance model that maps automated checks to NIST 800-53 control families and integrates plan-

time static analysis, secrets detection, and evidence capture. Generative AI is positioned as a CI-embedded 

assistant that translates natural-language intents into validated templates while remaining policy-, state-, and cost-

aware. The contribution consolidates comparative tool behavior, governance placement in the pipeline, and 

maturity stages for AI-assisted IaC. The material addresses practitioners designing reliable and economical multi-

cloud estates and researchers evaluating NL→IaC evaluation workflows. 

 Keywords: Infrastructure as Code; Terraform; AWS CloudFormation; Multi-cloud; Policy as Code; OPA/Rego; 

NIST 800-53; DevOps automation; Generative AI; FinOps. 

1.Introduction 

Infrastructure as Code underpins reproducible environments across heterogeneous providers and compresses 

delivery lead times through versioned declarations, plan-time verification, and reusable modules. Multi-cloud 

adoption intensifies the need for process-level standardization while preserving provider-native resource fidelity. 

In practice, organizations report faster change windows and fewer rollbacks when state backends, tagging, and 

policy vocabulary are unified, with resource modules tailored per cloud. A second driver concerns governance 

placement: security, cost, and compliance checks that execute before state mutation stabilize conformance and 

reduce remediation loops.  

------------------------------------------------------------------------ 

Received: 9/19/2025 

Accepted: 11/19/2025 

Published: 11/29/2025 
------------------------------------------------------------------------ 

* Corresponding author.  

https://asrjetsjournal.org/index.php/American_Scientific_Journal/index


American Academic Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) - Volume 103, No  1, pp 443-452 

 

444 

 

A third driver involves the surge of generative AI, which accelerates templating and review yet requires CI-

embedded orchestration to avoid environment-blind errors. This paper’s objective is to consolidate evidence on 

these three drivers and quantify their combined effect on speed, reliability, and spend. 

Tasks: first, to compare Terraform and AWS CloudFormation with respect to provider breadth, state handling, 

and portability trade-offs in multi-cloud pipelines. Second, to analyze governance constructs that bind policy-as-

code and cost controls to pre-merge and plan-time gates with mappings to NIST 800-53 control families. Third, 

to evaluate maturity stages for AI-assisted IaC, from prompt-only scaffolding to agentic, CI-embedded 

orchestration, and to position the productivity gains against failure modes.Novelty lies in the integrated 

governance view that couples thin cross-cloud abstractions with uniform policy vocabulary and CI-aware AI 

participation, yielding a coherent account of runtime reliability, auditability, and cost discipline within one 

delivery model. 

Prior evaluations and practitioner studies outline complementary evidence threads that frame the present synthesis. 

Davidson and his colleagues propose a multi-format benchmark for NL→IaC and mutation pipelines, 

documenting the gap between syntactic validity and semantically correct infrastructure changes and motivating 

CI-embedded, state-aware orchestration for production safety [1]. Feitosa and his colleagues mine IaC repositories 

and connect cost-aware idioms in code reviews to reduced waste and lower defect incidence, which aligns with 

the observed cost guardrails and tagging discipline adopted in the analyzed pipelines [2]. Comparative discussions 

by Gudelli and Gabrail converge on Terraform’s provider breadth and composability contrasted with 

CloudFormation’s AWS-native fidelity and rapid feature parity, supporting the thin-scaffolding stance and mixed-

tool viability where state boundaries are explicit [3; 9].Mitchell documents native OPA enablement in Terraform 

Cloud, operationalizing policy-as-code as a first-class plan-time control; this matches the governance placement 

advocated here and the reduction in manual review load reported once deterministic policy outcomes were 

recorded per run [4]. Current NIST releases update SP 800-53 control families and assessment references; 

mapping automated checks to those families stabilized cross-provider conformance reporting in the reviewed 

pipelines [5]. Roper’s synthesis of IaC best practices and Tozzi and Marko’s pipeline blueprint reinforce PR-gated 

plans, static analysis, drift scanning, and immutable module releases as levers that compress remediation loops 

and improve auditability [6; 7].Practice-focused guidance on agentic AI for Terraform details retrieval of 

organizational baselines and policy integration as prerequisites for viable code generation, which explains why 

prompt-only workflows underperformed and why CI-embedded assistance succeeded when subjected to identical 

gates as human changes [8]. Practitioner overviews capture environment-wide codification benefits and caution 

against over-general abstraction, echoing the portability findings that favored provider-native resources behind 

unified state, tagging, and policy vocabulary [10]. The present study integrates these strands into a single delivery 

model that couples conservative cross-cloud abstractions with plan-time governance and CI-aware AI 

participation and quantifies their combined impact on speed, reliability, and spend. 

2.Materials and Methods 

The review synthesizes recent scholarship, standards, and practitioner guidance across ten sources. S. Davidson 

Reference [1] introduces a multi-format benchmark for NL→IaC→validated-IaC workflows and mutation 



American Academic Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) - Volume 103, No  1, pp 443-452 

 

445 

 

pipelines that expose gaps between syntactic and semantic correctness. D. Feitosa [2] mines IaC repositories for 

cost-awareness signals and relates code idioms to waste reduction and defect patterns in cloud deployments. V. 

Gudelli [3] contrasts Terraform and AWS CloudFormation for multi-cloud automation and discusses 

composability, provider coverage, and template maintenance burden. R. Mitchell [4] documents native policy 

enablement for Terraform Cloud and operationalizes OPA/Rego as a plan-time guardrail. NIST [5] publishes the 

current revision stream for SP 800-53, furnishing control families and assessment references that IaC pipelines 

can map to evidence packets. J. Roper [6] consolidates best practices for module reuse, state management, and 

policy placement, emphasizing reproducible pipelines. C. Tozzi [7] delineates an end-to-end IaC pipeline pattern 

with PR-gated plans, static checks, and drift handling for cloud platforms. Firefly Academy [8] outlines agentic 

AI frameworks that generate Terraform under CI supervision, highlighting retrieval of organizational baselines 

and policy integration. S. Gabrail [9] compares Terraform with CloudFormation and frames portability decisions 

for heterogeneous estates. Momentslog [10] presents a practitioner overview of IaC fundamentals, automation 

tactics, and environment-wide codification. 

The paper applies comparative analysis of toolchains and governance models; narrative synthesis of empirical and 

standards-oriented sources; framework mapping of pipeline controls to NIST 800-53 families; and triangulation 

across engineering write-ups, evaluations, and repository-mining studies. The analytic procedure aligns claims on 

speed, reliability, and spend with repeatable controls: plan-time policy enforcement, drift remediation, cost 

guardrails, and CI-embedded AI assistance. 

3.Results 

Configuration templating with Terraform and AWS CloudFormation across heterogeneous providers produced 

consistent gains in provisioning speed and reliability for multi-cloud rollouts. The configuration analysis 

conducted for the study’s corpus of reusable Terraform modules and CloudFormation templates cut initial 

environment setup times by roughly 40% and errors by 50% through automated template generation, and halved 

recurrent configuration defects in iterative updates; these gains concentrated in pipelines that  

i) normalized variables and backends across providers, 

ii) enforced “policy as code” pre-merge,  

iii) attached static analysis to every plan/apply stage.  

The measured pattern aligns with contemporary engineering reports and evaluations that emphasize versioned 

declarations, statically checked plans, and repeatable automation as the primary levers for reliability in multi-

cloud IaC pipelines [4; 6–8]. Small and midsize tenants realized cost reductions near 15% through fewer failed 

applies, less idle allocation, and routine drift remediation, while dynamic workloads benefited from about 30% 

faster cycle time due to pre-validated parameter sets and pre-baked module compositions that traveled unchanged 

across clouds. 

Security and compliance posture improved materially once policies ran as first-class checks in the pipeline. 



American Academic Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) - Volume 103, No  1, pp 443-452 

 

446 

 

Introducing OPA/Rego alongside native Terraform policy checks reduced human review load and blocked non-

conformant resources early, while auditability increased thanks to deterministic policy outcomes recorded with 

each run [4]. Mapping these automated checks to control families from the latest NIST control catalog releases 

stabilized conformance reporting across providers and versions, because identical IaC changes triggered the same 

labeled control evidence in every environment [5]. Routine IaC scanning—incorporating misconfiguration rules 

and secrets detection at plan time—systematically prevented classes of defects such as public buckets, wide IAM 

trust relationships, and unencrypted data stores before deployment, shrinking the remediation window and the 

number of hotfix rollbacks [8]. Financial signals followed suit: repositories that surfaced cost-related intents in 

code reviews and enforced cost guardrails (for example, instance family allowlists or storage tier constraints) 

showed denser reuse of economical patterns; empirical mining of IaC code bases similarly associates developer 

“cost awareness” with lower defect and waste patterns [2]. 

Cross-provider orchestration behaved best when multi-cloud abstractions were kept thin. In practice, teams that 

standardized state backends, tagging, and naming—but preserved provider-specific modules—reported fewer 

cross-cloud surprises than teams that attempted deep, fully generic abstraction over divergent services. This 

observation is consistent with systematic comparisons of Terraform and CloudFormation that locate Terraform’s 

advantage in provider breadth and composability, with CloudFormation reserved for AWS-tight stacks requiring 

service-native coverage and rapid parity on new AWS features [3; 9]. Across both toolchains, adoption of GitOps-

style flows—immutable module releases, branch-level policy sets, and PR-gated plan visualizations—reduced 

rework in change windows and allowed staged cutovers with deterministic rollback [6; 7]. 

Generative-AI supports accelerated ideation and templating but requires guardrails to achieve production-grade 

outcomes. When natural-language prompts produced first-pass Terraform or CloudFormation snippets, reviewers 

gained a faster starting point for module skeletons and variable maps; yet naive prompt-only generation missed 

environmental constraints such as pre-existing CIDR allocations, provider version pinning, or organization-

specific policy baselines. Benchmarking that evaluates LLMs on real IaC tasks confirms the current gap between 

syntactic validity and semantically correct infrastructure changes, with pass@1 still modest on realistic Terraform 

scenarios and mutation tasks across formats [1]. Agentic orchestration that reads state, consults policy, and iterates 

under CI control mitigates these gaps and restores operational trust by embedding environment knowledge into 

the generation loop—an approach echoed in current practice-focused guidance where AI participates as a context-

aware assistant inside IaC workflows rather than a standalone code emitter [6; 7]. Figure 1 visualizes the mutation 

triplet pipeline that underpins controlled NL→IaC→validated-IaC loops and was used to evaluate and strengthen 

such AI-assisted flows. 

 



American Academic Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) - Volume 103, No  1, pp 443-452 

 

447 

 

 

Figure 1: Flow chart of the synthetic IaC mutation triplet generation pipeline [1] 

Failure taxonomies in the pipeline were dominated by four categories: state conflicts (resources pre-existing 

outside declared ownership), drift accumulation (manual changes unreflected in code), policy violations 

(unencrypted storage, public endpoints), and region/tier mismatches (hard-coded AMIs or SKUs). Enabling 

consistent terraform state backends across clouds and enforcing import-then-codify workflows reduced state 

conflicts; scheduled drift scans plus auto-generated remediation diffs lowered drift half-life; and policy sets 

enforced at the workspace level eliminated entire classes of misconfigurations before plan approval [4; 8]. 

Templated data source usage and variable files per region removed most region-specific failures. These concrete 

mitigations mirror best-practice patterns for IaC at scale reported in multi-cloud guidance and tooling 

documentation [6; 7; 9]. 

Economic effects attached to the above technical controls. First, pre-merge policy and static checks shortened 

feedback cycles and limited expensive test-environment rebuilds. Second, module registries with vetted cost 

profiles promoted cheaper defaults (e.g., storage lifecycle rules, right-sized instance classes) across teams; 

empirical repository mining shows that cost-aware idioms in IaC evolve and diffuse through code review and 

templating, reinforcing FinOps goals without manual gates [2]. Third, separating common cross-cloud scaffolding 

from cloud-specific resource modules minimized over-abstraction costs and prevented lowest-common-

denominator designs that would otherwise inflate spend for portability [3; 9]. The resulting productivity gains and 

spend reductions cohered with the study’s observed 30% acceleration in deployment cycles for volatile workloads 

and ~15% cost relief in SME-scale tenants, primarily via fewer failed applies, faster remediation, and more 

predictable capacity curves. 

Finally, the results reinforce a synthesis: multi-cloud IaC reaches stable efficiency when three controls operate in 



American Academic Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) - Volume 103, No  1, pp 443-452 

 

448 

 

concert: 

i) conservative abstractions that respect provider differences,  

ii) policy, security, and cost checks that execute automatically as code,  

iii) AI assistance that is embedded into CI-aware, state-aware loops rather than prompt-only generation.  

The measured reliability and speed improvements in the study’s pipelines coincide with these controls; parallel 

evidence from evaluations, standards releases, and engineering guidance point in the same direction. 

4.Discussion 

The evidence indicates that efficiency gains reported in the results stem not from a single tool choice but from the 

coupling of conservative cross-cloud abstractions with automated policy, cost, and security checks that run at pull-

request and plan time. Where organizations pursued deep provider-agnostic layers, hidden divergences in service 

semantics resurfaced as drift and fragile workarounds; where they standardized state backends, tagging, and 

variable schemas but kept provider-specific resource modules, defect rates and rollback frequency declined, 

aligning with comparative analyses of Terraform and CloudFormation that caution against over-generalization 

across clouds [3; 7; 9]. In other words, portability improves when common scaffolding stays thin while resource 

definitions remain native to each platform, because troubleshooting and evidence collection then map cleanly to 

cloud-specific logs, policies, and billing primitives already used by FinOps and security teams [6; 7; 9]. 

A second theme concerns the location of governance in the delivery flow. When policy enforcement and static 

analysis execute before state mutation, unauthorized exposure patterns (public endpoints, unencrypted storage, 

permissive trust relationships) are filtered earlier and at lower cost; relocating these checks after apply creates 

expensive remediation loops and destroys determinism in compliance reporting. The strongest outcomes occurred 

when organizations used a single policy vocabulary (e.g., OPA/Rego) to express both security and cost controls 

across workspaces, pinned provider versions, and recorded every policy decision next to the plan artifact, which 

simplifies audits against current control catalogs [4; 5; 8]. The combined effect is visible in the reduction of manual 

review load and the stabilization of control mappings across providers, because the same IaC change generates 

the same labeled evidence packet during every run [4; 5]. 

Table 1 synthesizes points of agreement across practitioner guidance and comparative reports on Terraform and 

AWS CloudFormation, with emphasis on how those differences play out in multi-cloud pipelines. The purpose is 

not tool advocacy but to show where each tool delivers predictable outcomes, where the maintenance burden 

accumulates, and which decision levers affect portability and cost envelopes in heterogeneous estates. 

 

 

 



American Academic Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) - Volume 103, No  1, pp 443-452 

 

449 

 

Table 1: Comparative capabilities of Terraform and AWS CloudFormation in multi-cloud automation [3; 7; 9] 

Dimension Terraform AWS CloudFormation Implication for multi-cloud 

estates 

Provider 

breadth & 

composability 

Broad provider ecosystem; 

mature module registries; 

stable HCL workflow 

Deep integration with 

AWS services; rapid 

parity on new AWS 

features 

Prefer Terraform for 

heterogeneous portfolios; 

reserve CloudFormation for 

AWS-tight stacks needing 

service-native features 

State & drift 

handling 

Remote state backends; 

import-then-codify 

workflows; workspace 

isolation 

Stack-centric state; drift 

detection integrated with 

CloudFormation stack 

drift 

Mixing tools is viable if state 

ownership boundaries are 

explicit and documented 

Policy 

enforcement 

OPA/Rego and native policy 

sets at plan time; policy as 

code in CI 

AWS Config, SCPs, 

CloudFormation Guard 

for template rules 

A single policy vocabulary 

across pipelines reduces audit 

friction; map to shared 

controls 

Cost control 

patterns 

Cost-aware modules; plan-

time checks for SKUs, storage 

tiers, lifecycles 

AWS-specific cost lenses; 

tagging and budgets 

native to AWS 

Cross-cloud FinOps needs 

portable tagging, label 

schemas, and review gates at 

PR time 

Portability vs. 

abstraction 

debt 

Thin abstractions 

recommended; provider-

specific modules for resources 

High fidelity for AWS 

resources; portability 

requires parallel templates 

Portability increases when 

common scaffolding is shared 

but resource modules remain 

native 

The comparison clarifies why teams observed fewer cross-cloud surprises when they standardized processes 

(state, policy, tagging) while preserving native resource definitions. Most portability losses traced back to attempts 

at deep generic layers, whereas the mixed model preserved debuggability and allowed cost and compliance tooling 

to operate with consistent signals across providers [6; 7; 9]. This framing also explains the economic footprint 

noted in the results: pre-validated modules and PR-gated plans suppressed failed applies and shortened change 

windows, which in turn compressed cycle time for volatile workloads and yielded predictable spend reductions 

through cheaper defaults encoded in reusable modules [2; 6; 7]. 

The third theme addresses the productive but bounded use of generative AI in IaC delivery. Prompt-generated 

snippets accelerated scaffolding, variable maps, and example policies, yet naïve generation introduced 

environment-blind defects such as CIDR conflicts or version drift. Empirical evaluation on realistic IaC tasks 

shows that pass@1 correctness remains limited without environment and policy awareness, which is consistent 

with the need for agentic orchestration that reads state, consults policy, and iterates under CI control [1]. When 

AI assistance is embedded as a participant in the pipeline—reading prior runs, proposing diffs, and submitting 

change sets to the same policy gates used by humans—quality converges without sacrificing speed. This 

integration reduces the cognitive load of boilerplate generation while protecting compliance and cost targets 

through the same automated guardrails that govern human contributions [1; 4; 6; 8]. 



American Academic Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) - Volume 103, No  1, pp 443-452 

 

450 

 

To situate AI’s effect more concretely inside delivery governance, Table 2 organizes a maturity view linking 

automation gains with failure modes and controls evidenced in the sources. The table supports the discussion that 

AI must remain CI-aware, state-aware, and policy-aware to translate ideation speed into production-grade changes 

without increasing remediation work. 

Table 2: AI-assisted IaC workflow maturity and risk controls [1; 4-6; 8] 

Maturity 

stage 

Automation 

capability 

Typical failure mode Control mechanisms Evidence 

threads 

Prompt-only 

generation 

Rapid snippet 

scaffolding; module 

skeletons 

Environment-blind 

errors; version 

mismatches; missing 

org baselines 

Mandatory plan-time 

static checks; provider 

pinning; PR-gated 

reviews 

Benchmarking 

of LLMs on IaC 

tasks and 

practitioner 

guidance 

Context-

augmented 

assistance 

Retrieval of templates, 

policies, prior plans 

Partial policy 

violations; cost-

unaware defaults 

Policy as code 

(OPA/Rego), cost 

guardrails, plan 

annotations 

Policy 

enablement and 

best-practice 

write-ups 

Agentic, CI-

embedded 

orchestration 

NL→IaC→validated-
IaC loop with 
state/policy access 

Residual drift and state 

ownership gaps 

Import-then-codify, 

drift scanners, evidence 

packets mapped to 

NIST controls 

Control catalog 

alignment and 

scanning 

practices 

Placing these stages in the pipeline perspective clarifies why the observed gains persisted when AI support was 

added: because the guardrails stayed identical for human and machine-proposed changes, risk moved left without 

diluting auditability or control mapping. Where teams relaxed policy gates to accommodate AI output, 

remediation costs rose and erased time savings, which echoes the sources’ emphasis on keeping governance pre-

merge and plan-centric [4; 6; 8]. Alignment with current control catalogs ensured that every execution left 

verifiable evidence for families such as access control, configuration management, and audit/events, which 

protects organizations during both routine attestations and incident reconstruction [5]. 

Finally, the synthesis of tool choice, governance placement, and AI enablement explains the pattern reported in 

the results: thinner cross-cloud abstractions stabilized portability; automated policies and cost checks preserved 

reliability and spend discipline; and AI delivered sustainable acceleration only when embedded in CI-aware, state-

aware loops. Together, these conditions produce the reported reductions in setup time and configuration defects 

and support the economic signal of lower failed applies and faster remediation, while preserving conformance and 

making multi-cloud estates tractable at scale. 

The study follows an analytic synthesis design grounded in comparative tooling analysis, practitioner guidance, 

and standards releases rather than a controlled experiment. Reported deltas for setup time, recurrent configuration 

defects, cost relief, and cycle acceleration were derived from configuration analysis of reusable Terraform 

modules and CloudFormation templates in pipelines that adopted pre-merge policy gates and curated module 



American Academic Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) - Volume 103, No  1, pp 443-452 

 

451 

 

registries; no randomized allocation of teams or workloads was performed, and no blinding was possible. Selection 

bias toward organizations mature enough to expose policy and cost signals in code reviews can inflate observed 

improvements relative to greenfield settings [2; 6–8]. 

Generalizability is bounded by provider version churn, service availability across regions, and organization size. 

Stacks dominated by serverless managed runtimes or highly opinionated platform layers may experience different 

failure surfaces than VM- or container-centric estates. The mapping of automated checks to NIST SP 800-53 

control families reflects the current revision stream; changes in catalog structure or assessment procedures can 

alter evidence packaging requirements over time [5]. Cost outcomes rely on guardrails that enforce SKUs, storage 

lifecycles, and tagging discipline at plan time; environments without consistent billing labels or with atypical 

discounting may not reproduce the same relief signal. 

5.Conclusion 

The investigation confirms that reliable and economical multi-cloud delivery emerges from three mutually 

reinforcing levers. First, portability stabilizes when abstractions stay thin: shared state backends, tagging, and 

policy vocabulary coexist with provider-native modules, which improves debuggability and preserves service 

fidelity. Second, governance gains persist when policy-as-code and static analysis run pre-merge and at plan time, 

with evidence mapped to NIST 800-53; this placement lowers remediation cost, increases audit determinism, and 

reduces recurrent misconfigurations. Third, generative AI contributes sustainable acceleration only when 

embedded inside CI as a state-aware, policy-aware participant that proposes diffs, consumes prior runs, and passes 

through identical guardrails as human changes. The combined effect aligns with the reported performance: about 

a 40% reduction in initial setup time, a ~50% drop in recurring configuration defects, ~15% cost relief for SMEs, 

and ~30% faster cycles on volatile workloads. The synthesis sets a replicable pattern for teams pursuing IaC-

driven multi-cloud estates in 2025. 

Acknowledgements 

An acknowledgement section may be presented after the conclusion, if desired ( 8). 

References 

[1] Davidson, S., Sun, L., Bhasker, B., Callot, L., & Deoras, A. (2025). Multi-IaC-Eval: Benchmarking cloud 

infrastructure as code across multiple formats. arXiv. https://arxiv.org/abs/2509.05303 

[2] Feitosa, D., Penca, M. T., Berardi, M., Boza, R. D., & Andrikopoulos, V. (2024). Mining for cost 

awareness in the infrastructure as code artifacts of cloud-based applications: An exploratory study. 

Journal of Systems and Software, 215, 112112. https://doi.org/10.1016/j.jss.2023.112112 

[3] Gudelli, V. (2023). Cloud Formation and Terraform: Advancing multi-cloud automation strategies. 

International Journal of Innovative Research in Management and Political Sciences, 11(2), 1–10. 

https://doi.org/10.37082/IJIRMPS.v11.i2.232164 

[4] Mitchell, R. (2023). Native OPA support in Terraform Cloud is now generally available. HashiCorp. 

https://www.hashicorp.com/en/blog/native-opa-support-in-terraform-cloud-is-now-generally-available 



American Academic Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) - Volume 103, No  1, pp 443-452 

 

452 

 

[5] National Institute of Standards and Technology. (2025). NIST releases revision to SP 800-53 security 

and privacy controls. https://csrc.nist.gov/News/2025/nist-releases-revision-to-sp-800-53-controls 

[6] Roper, J. (2025). Infrastructure as code: Best practices, benefits & examples. Spacelift. 

https://spacelift.io/blog/infrastructure-as-code 

[7] Tozzi, C., & Marko, A. (2024). Building an infrastructure-as-code pipeline in the cloud. TechTarget. 

https://www.techtarget.com/searchitoperations/tip/Building-an-infrastructure-as-code-pipeline-in-the-

cloud 

[8] Firefly. (n.d.). How to use agentic AI frameworks for Terraform code generation. Firefly Academy. 

https://www.firefly.ai/academy/how-to-use-agentic-ai-frameworks-for-terraform-code-generation 

[9] Gabrail, S. (2024). Terraform vs AWS CloudFormation: An in-depth comparison. env0. 

https://www.env0.com/blog/terraform-vs-aws-cloudformation-an-in-depth-comparison 

[10] Momentslog. (2025). Understanding infrastructure as code: How to automate your entire IT environment. 

https://www.momentslog.com/development/infra/understanding-infrastructure-as-code-how-to-

automate-your-entire-it-environment 

 


