American Academic Scientific Research Journal for Engineering, Technology, and Sciences
ISSN (Print) 2313-4410, ISSN (Online) 2313-4402

Domain Driven Development — Changing the Philosophy

of Working on a Project

Kucheruk Artem”

Senior Software Developer,Wells Fargo,Charlotte, North Carolina, USA

Email:Artem.Kucheruk@wellsfargo.com

Abstract

The article examines domain-driven development (DDD) as a shift from technology-first delivery to business-
first modeling with enforceable boundaries and contracts. The review integrates recent findings on bounded
contexts, aggregate consistency, context mapping, and domain events with empirical results from microservice
performance studies, event-driven pipelines, reactive execution, autoscaling, and overload control. In addition,
the review positions CQRS as a complementary pattern to DDD: commands validate invariants within aggregate
boundaries while queries rely on denormalized read models for independent evolution. The paper provides a
decision aid for when CQRS improves throughput, traceability, and change isolation versus when a unified model
remains simpler. The analysis consolidates a boundary-discovery workflow that couples collaborative modeling
with data-assisted decomposition. A practitioner case with DDD reports shorter onboarding and faster delivery
after establishing a stable ubiquitous language and context map. The manuscript includes an evidence-based
interaction table, a governance table for documentation and operations, and a figure illustrating data-driven
decomposition. The results target architects and leads who need reproducible criteria for partitioning,

collaboration, runtime control, and team enablement across complex enterprise portfolios.

Keywords:domain-driven design; bounded contexts; microservices; event-driven architecture; CQRS;autoscaling;

overload control;context mapping; onboarding; runtime adaptation.

Received: 9/19/2025
Accepted: 11/19/2025
Published: 11/29/2025

* Corresponding author.

453

https://asrjetsjournal.org/index.php/American_Scientific_Journal/index

American Academic Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) - Volume 103, No 1, pp 453-463

1.Introduction

Enterprise programs accumulate accidental complexity when service decomposition precedes a shared domain
language. DDD reframes work around bounded contexts and contracts that match business semantics, reducing
translation overhead between product intent and code. Teams face concrete trade-offs when binding these choices
to interaction and execution styles: event-driven vs. synchronous calls, and reactive vs. imperative internals. A
practitioner case reports onboarding acceleration and development-throughput gains after standardizing domain
language and boundaries across teams. The present study systematizes peer-reviewed evidence from the last five
years and relates it to operational controls that stabilize latency tails and preserve autonomy under burst and

failure.

Goal — to articulate how DDD changes project philosophy and to ground that shift in verifiable decomposition,
interaction, execution, and governance practices and to situate CQRS alongside DDD as a disciplined way to
separate writes from reads where product semantics and traffic profiles justify it. Tasks:

1) Consolidate a boundary-discovery workflow that combines collaborative modeling with data-assisted
decomposition.

2) Derive criteria for selecting interaction (event-driven vs. synchronous) and execution (reactive vs.
imperative) styles consistent with workload shape.

3) Specify documentation and runtime governance that sustain autonomy, testability, and onboarding.

4) Clarify when CQRS improves autonomy and scalability of read models without undermining

transactional clarity of aggregates.

Novelty. The manuscript links socio-technical DDD artifacts (ubiquitous language, context maps, ADRS) to
measurable runtime controls (autoscaling, overload control, stream reconfiguration), offering tables and a
decomposition figure that translate literature into design-time and run-time checklists, and integrating a CQRS

decision aid tied to aggregate boundaries and read-model governance.
2.Materials and methods

Sources used. G. Akdur [1] analyzes virtual onboarding dynamics in distributed developer teams and identifies
drivers that correlate with retention and integration. L. Bacchiani [2] proposes proactive—reactive global scaling
for microservices and evaluates SLO attainment against purely reactive baselines. M. Cabane [3] measures the
performance impact of event-driven architecture under realistic workloads. V. Cardellini [4] surveys runtime
adaptation in data-stream processing with classifications for elasticity mechanisms and evolution strategies. R.
Maharjan [5] presents a case study on monolith-to-microservices decomposition with representation learning and
clustering that recovers deployable service cuts. W. Meijer [6] experimentally evaluates architectural performance
patterns (e.g., aggregation, pipes-and-filters) in microservices. K. Mochniej [7] compares reactive and imperative
microservices, detailing throughput, latency, and memory characteristics. B. Ozkan [8] delivers a systematic
literature review of DDD practices and documentation needs. R. Bhattacharya [9] introduces client-side overload

control with feedback to stabilize latency tails in microservices. S. Zbarcea [10] reports on migration from

454

American Academic Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) - Volume 103, No 1, pp 453-463

asynchronous multi-threading to reactive programming in Java with quantified resource-latency effects.

Methodological approach. Comparative analysis, structured literature synthesis, and evidence mapping were
applied to peer-reviewed works from the last five years (English-language journals/conference venues). Inclusion
criteria focused on studies reporting measurable outcomes or taxonomies applicable to DDD-aligned
decomposition, interaction, execution, and runtime control. Where CQRS is discussed in secondary sources and
practitioner reports summarized by recent reviews of DDD practice, we extract criteria rather than tooling

specifics and tie them to aggregate design and read-model evolution.

3.Results

Domain-driven development (DDD) reorients software work from technology-first execution to business-first
modeling and agreement on language, boundaries, and behavioral contracts. Recent syntheses confirm that
contemporary DDD practice concentrates on bounded contexts, aggregate consistency, context mapping, and
domain events as primary structuring devices, with widespread use in microservice programs and increasing
attention to collaborative modeling workshops and documentation that preserve domain language over time [8].
Empirical evidence from microservice studies adds that architecture-level patterns alter runtime characteristics in
measurable ways, so the “philosophy shift” must be assessed not only by modularity or comprehension gains but

by latency, throughput, and resource profiles under realistic load [6].

Separation by business boundary and its operational effects. Systematic reviews depict DDD adoption as a way
to align organizational teams and service ownership with coherent boundaries; results show frequent pairing of
bounded contexts with microservice units, context maps to govern inter-service collaboration, and domain event
streams to decouple change [8]. Where DDD is paired with event-driven architecture (EDA), controlled
experiments report that asynchronous, event-mediated pipelines tend to cut tail-latency and improve elasticity
relative to strictly synchronous request/response, while introducing messaging overheads and additional runtime
components that affect cold-start behavior and memory footprints [3]. In microservices that apply gateway
aggregation/offloading or pipes-and-filters—patterns often used to implement context integration—experimental
evaluation finds pattern-specific performance signatures (e.g., bottleneck shifts after aggregation, resource-
utilization inflection points under heterogeneous workloads), underscoring the need to treat architecture tactics as

measurable interventions rather than generic best practices [6].

Case-study results on automated monolith-to-microservices decomposition using representation learning and
clustering provide a concrete path to recover candidate service cuts that often coincide with DDD boundaries. The
evaluated pipeline constructs entrypoint co-existence/existence matrices, embeds call-graph structure, and groups
functionality into deployable units; authors report successful partitioning with face validity against business

functions (Figure 1) [5].

455

American Academic Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) - Volume 103, No 1, pp 453-463

/ Data Preparation \

J 1
| I —
l M- ’ i) 1
" Dependency Graph = = = Feature Matrix Dependency Graph
Monolithic
Application !_“ o K

\ Entrypoint Co-existence Matriy

W &=

Microservice Clustering Embedding Matrix Embedding Vector
Application

Figure 1: Data-driven decomposition pipeline for identifying microservice candidates aligned with DDD

boundaries [5]

At the portfolio scale, state-of-the-art reengineering surveys consolidate techniques that mix static and dynamic
analysis with domain knowledge to plan stepwise extraction, reinforcing the finding that boundary discovery

benefits from both code-level signals and domain language [2].

Event-driven vs. synchronous collaboration across contexts. Controlled experiments on EDA quantify when event
propagation outperforms direct synchronous calls: workloads with bursty fan-out see more stable response-time
distributions and fewer incast-induced stalls under feedback-aware event pipelines, at the cost of extra broker hops
and serialization overhead [3]. Complementary work on client-side overload-aware balancing for microservices
shows that pushing load-shedding signals into the balancing layer stabilizes latencies and narrows tails without
central coordination, supporting DDD’s preference for local autonomy between contexts during overload and
failure [9]. The combined result suggests a modeling rule of thumb: define inter-context relationships by domain
contracts first, then choose synchronous vs. event-driven interaction based on fan-out, back-pressure needs, and

recovery semantics rather than stylistic preference [3, 9].

CQRS for write/read separation across domain boundaries. CQRS complements DDD by keeping command
handling and invariant checks inside aggregates while allowing read models to denormalize, precompute, and
scale independently. The pattern fits read-heavy products, multi-view Uls, auditability requirements, and long-
running reporting where fresh writes do not require synchronous projection of every view. It underperforms when
the domain relies on tight, synchronous read-after-write semantics or when the domain model remains small and
cohesive enough for a single data model. Effective CQRS practice hinges on explicit contracts for read models

(schemas, SLAs for staleness), idempotent projections, and backfills for replays; event publication is a convenient

456

American Academic Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) - Volume 103, No 1, pp 453-463

transport but not a prerequisite.

Run-time adaptation for stream-centric domains. A comprehensive survey of data-stream processing identifies
matured mechanisms for elasticity (operator migration, scale-out/in, topology reconfiguration) and classifies
control strategies by triggers and objectives; these mechanisms directly support DDD designs that treat domain
events as first-class data with isolation of stateful operators per bounded context. Results emphasize combining
autoscaling with schema/version evolution and contract testing to curb ripple effects across context boundaries

during adaptation [4].

Scaling and resource governance across contexts. Recent experimentation on proactive—reactive global scaling
shows that orchestrators combining prediction with feedback reach target utilization with fewer SLO breaches
and improved resource efficiency relative to purely reactive baselines; this supplies a runtime complement to
DDD’s compile-time boundary contracts by preserving service quality during demand shifts without eroding
ownership lines [2]. When DDD systems adopt client-side overload control and hybrid autoscaling together,
studies report narrower latency distributions and more stable capacity planning, which simplifies domain-level

SLOs associated with each bounded context [2, 9].

Human-centric outcomes: onboarding and model comprehension. A field study of virtual onboarding for
distributed developer teams finds that structured knowledge delivery and tool readiness correlate with lower
turnover intention and higher perceived integration; the introduced framework formalizes onboarding drivers and
obstacles in remote settings [1]. Reactive execution helps when endpoints spend most of the time waiting on
external 1/0 or multiplexing many slow upstreams; in compute-centric flows it rarely pays off. Treat reactive
internals as an execution tactic subordinate to aggregate design and interaction contracts rather than as a universal
baseline. Clear domain boundaries and stable language reduce support burden by shrinking translation work and
unintended coupling across teams. Shared artifacts and explicit ownership structures correlate with higher day-to-
day engagement in implementation, since decisions map cleanly to domain terms and are easier to defend in

reviews.

Synthesis for DDD as a shift in project philosophy. Across the reviewed evidence, the development flow moves
from “implement features” to “consolidate domain knowledge, then implement” with measurable architectural

consequences:

i) boundary-first decomposition guided by domain language, supported by decomposition pipelines where

needed;

ii) interaction styles chosen to stabilize tail-latency and constrain coupling between contexts;

iii) execution models selected per domain workload shape, with reactive pipelines reserved for high-

concurrency /O and imperative paths retained for transactional aggregates;

iv) runtime adaptation and autoscaling layered beneath domain contracts to sustain SLOs without breaking

ownership.

457

American Academic Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) - Volume 103, No 1, pp 453-463

4.Discussion

The synthesis positions domain-driven development as a governance frame for aligning structural boundaries,
interaction styles, and runtime control with the semantics of a business domain. Systematic evidence places
bounded contexts, aggregates, and ubiquitous language at the center of successful programs and reports that teams
sustain these choices by combining documentation with architectural mechanisms that protect autonomy during
traffic and change surges [8]. Studies on microservice performance patterns and event-driven pipelines show that
the philosophical shift only yields durable gains when decomposition and interaction tactics are paired with
measurement-guided runtime controls; otherwise coupling reappears through hidden queues, ad-hoc gateways,
and incidental synchronization [3, 6, 9]. These results justify treating DDD decisions as hypotheses that require
both socio-technical validation (language, ownership, onboarding) and empirical verification under realistic load
profiles. Within this frame, CQRS supplies a compact way to decouple read evolution from transactional integrity
of aggregates, provided that projection lag and schema governance are treated as first-class operational
concerns.From an interpretive standpoint, the consolidated evidence points to three clusters of outcomes that are
directly relevant for practitioners. First, portfolio structure becomes more stable: services aligned with bounded
contexts tend to evolve together, while cross-cutting changes decline as anti-corruption layers and contractual
APIs mature [5, 8]. Second, runtime behavior shows narrower latency distributions and higher efficiency when
event-driven pipelines, autoscaling, and overload-aware clients are configured in line with domain boundaries and
traffic profiles rather than adopted as generic best practices [2—4, 9]. Third, team dynamics and collaboration
outcomes improve when ubiquitous language, context maps, and ADRs connect architectural decisions to domain
terms: teams report fewer misunderstandings in design discussions and smoother handovers between product and
engineering [1, 8]. The practitioner program that motivated this review followed the same pattern: an initial phase
of collaborative modeling and documentation was succeeded by gradual refactoring of services and scaling

policies, which reduced unplanned cross-team escalations and produced a more predictable delivery cadence.

Boundary discovery and the durability of service cuts. Data-assisted decomposition confirms that code-level
signals and runtime traces can recover service candidates that frequently coincide with domain partitions. A case
study using representation learning over dependency graphs produced groups with face validity against business
functions, supporting a practice where exploratory clustering and event co-occurrence are used to challenge or
corroborate workshop-derived boundaries before irreversible extraction steps [5]. Portfolio-level reviews argue
for combining such analytics with stepwise re-wiring tactics and contract testing to avoid “big-bang” splits that
later erode ubiquitous language with translation objects and brittle anti-corruption layers [2, 4]. In short, boundary
proposals benefit from a two-pass approach: first by domain workshops and context maps [8], then by quantitative

probes that detect cross-cutting hotspots prior to migration [5].

In relation to earlier studies, the present synthesis narrows several gaps that remain in the individual strands of
literature. Ozkan and his colleagues [8] chart adoption patterns for DDD and stress the need for sustained
documentation, but they stop short of linking these socio-technical artifacts to concrete runtime mechanisms such
as autoscaling, overload control, or stream reconfiguration. Cardellini and his colleagues [4] and Bacchiani and
his colleagues [2] examine adaptation and global scaling for data-stream and microservice platforms yet treat

domain modeling only peripherally. Meijer and his colleagues [6], Cabane and Kleinner [3], Mochniej and

458

American Academic Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) - Volume 103, No 1, pp 453-463

Badurowicz [7], and Zbarcea and his colleagues [10] focus on performance trade-offs for architectural and
implementation styles, while Bhattacharya and his colleagues [9] investigate overload-aware load distribution,
again without grounding these results in DDD constructs. By aligning these contributions around bounded
contexts, aggregates, and CQRS-oriented read models, the present review offers a unifying frame in which
findings from performance engineering, adaptive systems, and socio-technical onboarding research reinforce one

another instead of remaining isolated observations tied to specific tools or platforms.

Interaction styles across contexts: selecting for workload shape. Empirical studies of event-driven architecture
(EDA) report more stable tail behavior in bursty workloads and under fan-out, balanced against
broker/serialization overhead and operational components that affect cold starts and observability [3]. Pattern-
evaluation work for microservices finds signature trade-offs for integration tactics (e.g., gateway aggregation vs.
pipes-and-filters), implying that DDD’s context relationships should be mapped to interaction styles only after
profiling expected concurrency, request amplification, and back-pressure needs [6]. Client-side overload control
with feedback to balancers narrows latency distributions without central coordination, which preserves the local
autonomy DDD expects between contexts during partial failures [9]. Reactive execution inside a context tends to
reduce memory consumption and 90th-percentile latency for 1/0-bound flows, while benefits shrink or invert for
compute-bound paths and complex read patterns; migration studies caution against blanket adoption and
recommend targeted application where concurrency and waiting dominate [7, 10]. Table 1 summarizes a selection

guide grounded in these findings and is intended for design reviews between domain and platform leads.

459

American Academic Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) - Volume 103, No 1, pp 453-463

Table 1: Interaction style selection across bounded contexts (evidence-based guide) (compiled by the author
based on [3, 4, 6-10])

Workload

infamong contexts

signature

Preferred interaction

Rationale

Caveats

Bursty fan-out from one

Event-driven

Smooths bursts, decouples

Broker hops and serialization

context to many | publishing with durable | producers/consumers, overhead,; observability
consumers broker stabilizes tails complexity

Strict transactional | Synchronous Simple failure semantics and | Coupling if used across
workflow within one | request/response transactional clarity for a | aggregates; avoid cross-context

aggregate

single consistency boundary

ACID

High-concurrency, 1/0O-

bound pipelines inside a

Reactive handlers and

back-pressure

Improved concurrency with
lower RAM and narrower

Debuggability and tooling; not a

universal throughput win

context p90 latency
Read-heavy product | CQRS with | Independent scaling and | Dual-model complexity;
areas with multiple | denormalized read | evolution of queries; simpler | projection lag and backfill
views and weak read- | models (optionally | command path and clearer | procedures; governance of read-
after-write coupling event sourcing for | aggregate invariants model schemas

audit)

Stream processing with
stateful operators across

events

Event streams + elastic

DSP operators

Operator-aware scale-
out/migration; contract-based

evolution

Requires schema/version

discipline and contract testing

Overload or partial

failure at edges

Client-side balancing

with overload feedback

Narrows latency tails without

central coordination

Requires fine-tuned

shedding/admission signals

Autoscaling and adaptation mechanisms provide the operational complement to compile-time boundaries. A

proactive—reactive scaling approach synthesizes configuration-level reconfigurations to meet SLOs with fewer

breaches than purely reactive baselines, reducing the pressure to widen service contracts during demand spikes

Reference [2]. In stream-centric domains, operator migration, elastic state management, and topology

reconfiguration give teams a controlled vocabulary for change at runtime, provided that schema and version

evolution are treated as first-class contracts between contexts [4]. Combined with overload-aware client balancing,

these controls keep bounded contexts operationally independent while still collaborating through durable contracts

Reference[2, 9].

Human outcomes and documentation practice. Virtual onboarding research correlates structured knowledge

delivery with lower turnover intention and faster role integration for developers [1]. DDD programs operationalize

this through a maintained domain glossary, context maps, and decision records that explain why boundaries,

460

American Academic Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) - Volume 103, No 1, pp 453-463

contracts, and interaction styles exist; the literature review on DDD explicitly highlights the need to

institutionalize ubiquitous language to sustain comprehension as teams evolve [8]. Table 2 consolidates evidence-

backed documentation and governance practices that support maintainability and onboarding in distributed

product teams.

Table 2: Documentation and governance practices that sustain DDD outcomes (compiled by the author based

on [1, 2, 4-10])

Practice / artifact

Intended outcome

Evidence-backed notes

Ubiquitous language glossary +

context map

Faster comprehension and
consistent naming across

teams

SLR stresses sustained language and boundary

documentation for effectiveness

Architecture decision records
(ADRS) linking domain contracts to

interaction style

Traceable rationale during

refactors and audits

Pattern evaluations show performance signatures

vary; ADRs prevent cargo-cult reuse

Decomposition analytics

(dependency graphs, clustering)

used prior to extraction

Higher boundary fidelity,

fewer cross-cuts

Case study shows data-driven clusters align with

business functions; use to challenge workshop cuts

Proactive—reactive autoscaling

policies as part of service SLOs

SLO

widening contracts

stability without

Fewer breaches than purely reactive baselines in

microservice settings

Contract testing and | Safer evolution across | Survey classifies runtime adaptation and stresses
schemal/versioning for event | contexts contract maintenance

streams

Onboarding kits that embed | Lower turnover intention | Onboarding study correlates structured, tool-ready
glossary, context map, and service | and faster time-to- | materials with improved retention indicators

playbooks

effectiveness

Overload-aware client balancing

patterns in platform guidelines

Latency tail control under

burst and imbalance

Feedback-driven balancing stabilizes response

times without centralized metadata

Reactive vs. imperative decision

guide per service endpoint

Targeted use of reactive
where workload benefits

are proven

Comparative and migration studies caution against

blanket adoption

Not all components of the evidence base carry the same weight, and several restrictions shape the interpretation

of the synthesized results. The primary corpus consists of English-language, peer-reviewed publications from

roughly the last five years, complemented by a small number of recent preprints. Studies that report negative

461

American Academic Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) - Volume 103, No 1, pp 453-463

outcomes or neutral experiences with DDD, CQRS, or related architectural tactics are likely underrepresented,
because such work tends to appear less often in archival venues. The empirical foundations are mixed: controlled
experiments on performance patterns, targeted evaluations of event-driven pipelines, and single-program
migration studies dominate [2—7, 9, 10], whereas long-term longitudinal observations across entire enterprise
portfolios remain rare. Quantitative evidence for the practitioner program referenced in this article is based on
internal reports and is available only in aggregated form, which limits reproducibility and independent

verification.

Threats to external validity arise from the technological and organizational scope of the reviewed work. Most
measurements concern microservice and data-streaming platforms in cloud-native environments and involve
organizations that already operate with a certain level of automation, monitoring, and deployment maturity.
Conclusions transfer less directly to monolithic systems, legacy integration landscapes, or teams with limited
observability and weak separation of ownership. CQRS-related guidance relies largely on secondary sources and
conceptual analyses rather than on head-to-head experiments isolating the effect of read/write separation, so
prescriptions for or against CQRS in borderline domains should be treated as hypotheses to be validated through
local experiments, canary deployments, and continuous profiling. These constraints argue for incremental
adoption of DDD and CQRS with feedback from measurements and incident reviews, instead of one-time
redesigns based solely on published results and generalized experience reports.

5.Conclusion

Boundary-first thinking anchors the change in project philosophy: ubiquitous language and context maps precede
implementation, while data-assisted decomposition validates proposed cuts before extraction. Interaction style
selection follows workload shape rather than fashion: event-driven pipelines suit bursty fan-out and decoupling
needs; synchronous calls serve narrow, transactional aggregates; reactive execution benefits 1/0-bound flows but
not every compute-heavy path. Runtime governance complements compile-time design through predictive-
reactive autoscaling and overload-aware balancing that preserve autonomy and narrow latency tails during
demand shifts. Documentation and onboarding practices—glossary, context map, ADRs, contract tests, and
schema/version discipline—sustain comprehension and reduce re-coupling as teams evolve. The combined
workflow delivers reproducible criteria for partitioning, collaboration, execution choice, and operational control,
aligning day-to-day engineering with business semantics while retaining measurable performance and
maintainability in enterprise portfolios. The same artifacts lower support costs and raise team engagement by
keeping change localized and language consistent across product areas.

References

[1]. Akdur, G., Aydin, M. N., & Akdur, G. (2024). Understanding virtual onboarding dynamics and developer
turnover intention in the era of pandemic. Journal of Systems and Software, 216, 112136.
https://doi.org/10.1016/j.jss.2024.112136

[2]. Bacchiani, L., Bravetti, M., Giallorenzo, S., Gabbrielli, M., Zavattaro, G., & Zingaro, S. P. (2025).

Proactive—reactive microservice architecture global scaling. Journal of Systems and Software, 220,

462

American Academic Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) - Volume 103, No 1, pp 453-463

[3].

[4].

[5].

[6].

[7].

8].

[9].

[10].

112262. https://doi.org/10.1016/j.jss.2024.112262

Cabane, M., Kleinner, F. (2024). On the impact of event-driven architecture on performance: an
exploratory study. Advance online publication. 153(C), 52-69. DOI:10.1016/j.future.2023.10.021
Cardellini, V., Lo Presti, F., Nardelli, M., & Russo Russo, G. (2022). Runtime adaptation of data stream
processing systems: The state of the art. ACM Computing Surveys, 54(11s), Article 237, 1-36.
https://doi.org/10.1145/3514496

Maharjan, R., Sooksatra, K., Cerny, T., Rajbhandari, Y., & Shrestha, S. (2025). A Case Study on
Monolith to Microservices Decomposition with Variational Autoencoder-Based Graph Neural Network.
Future Internet, 17(7), 303. https://doi.org/10.3390/fi17070303

Meijer, W., Trubiani, C., & Aleti, A. (2024). Experimental evaluation of architectural software
performance design patterns in microservices. Journal of Systems and Software, 218, 112183.
https://doi.org/10.1016/j.jss.2024.112183

Mochniej, K., & Badurowicz, M. (2023). Performance comparison of microservices written using
reactive and imperative approaches. Journal of Computer Sciences Institute, 28, 242-247.
https://doi.org/10.35784/jcsi.3698

Ozkan, B., Babur, 0., & van den Brand, M. G. J. (2025). Domain-driven design: A systematic literature
review. Journal of Systems and Software. Advance online publication.
https://doi.org/10.1016/j.jss.2025.112537

Bhattacharya, R., Gao, Y., & Wood, T. (2024). Dynamically balancing load with overload control for
microservices. ACM Transactions on Autonomous and Adaptive Systems, 19(4), Article 22, 1-23.
https://doi.org/10.1145/3676167

Zbarcea, S., Kiselev, V., & Kiselev, A. (2024). Migrating from developing asynchronous multi-
threading programs to reactive programs in Java. Applied Sciences, 14(24), 12062.
https://doi.org/10.3390/app142412062

463

