

453

American Academic Scientific Research Journal for Engineering, Technology, and Sciences

ISSN (Print) 2313-4410, ISSN (Online) 2313-4402

https://asrjetsjournal.org/index.php/American_Scientific_Journal/index

Domain Driven Development — Changing the Philosophy

of Working on a Project

Kucheruk Artem*

Senior Software Developer,Wells Fargo,Charlotte, North Carolina, USA

Email:Artem.Kucheruk@wellsfargo.com

Abstract

The article examines domain-driven development (DDD) as a shift from technology-first delivery to business-

first modeling with enforceable boundaries and contracts. The review integrates recent findings on bounded

contexts, aggregate consistency, context mapping, and domain events with empirical results from microservice

performance studies, event-driven pipelines, reactive execution, autoscaling, and overload control. In addition,

the review positions CQRS as a complementary pattern to DDD: commands validate invariants within aggregate

boundaries while queries rely on denormalized read models for independent evolution. The paper provides a

decision aid for when CQRS improves throughput, traceability, and change isolation versus when a unified model

remains simpler. The analysis consolidates a boundary-discovery workflow that couples collaborative modeling

with data-assisted decomposition. A practitioner case with DDD reports shorter onboarding and faster delivery

after establishing a stable ubiquitous language and context map. The manuscript includes an evidence-based

interaction table, a governance table for documentation and operations, and a figure illustrating data-driven

decomposition. The results target architects and leads who need reproducible criteria for partitioning,

collaboration, runtime control, and team enablement across complex enterprise portfolios.

Keywords:domain-driven design; bounded contexts; microservices; event-driven architecture; CQRS;autoscaling;

overload control;context mapping; onboarding; runtime adaptation.

--

Received: 9/19/2025

Accepted: 11/19/2025

Published: 11/29/2025
--

* Corresponding author.

https://asrjetsjournal.org/index.php/American_Scientific_Journal/index

American Academic Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) - Volume 103, No 1, pp 453-463

454

1.Introduction

Enterprise programs accumulate accidental complexity when service decomposition precedes a shared domain

language. DDD reframes work around bounded contexts and contracts that match business semantics, reducing

translation overhead between product intent and code. Teams face concrete trade-offs when binding these choices

to interaction and execution styles: event-driven vs. synchronous calls, and reactive vs. imperative internals. A

practitioner case reports onboarding acceleration and development-throughput gains after standardizing domain

language and boundaries across teams. The present study systematizes peer-reviewed evidence from the last five

years and relates it to operational controls that stabilize latency tails and preserve autonomy under burst and

failure.

Goal – to articulate how DDD changes project philosophy and to ground that shift in verifiable decomposition,

interaction, execution, and governance practices and to situate CQRS alongside DDD as a disciplined way to

separate writes from reads where product semantics and traffic profiles justify it. Tasks:

1) Consolidate a boundary-discovery workflow that combines collaborative modeling with data-assisted

decomposition.

2) Derive criteria for selecting interaction (event-driven vs. synchronous) and execution (reactive vs.

imperative) styles consistent with workload shape.

3) Specify documentation and runtime governance that sustain autonomy, testability, and onboarding.

4) Clarify when CQRS improves autonomy and scalability of read models without undermining

transactional clarity of aggregates.

Novelty. The manuscript links socio-technical DDD artifacts (ubiquitous language, context maps, ADRs) to

measurable runtime controls (autoscaling, overload control, stream reconfiguration), offering tables and a

decomposition figure that translate literature into design-time and run-time checklists, and integrating a CQRS

decision aid tied to aggregate boundaries and read-model governance.

2.Materials and methods

Sources used. G. Akdur [1] analyzes virtual onboarding dynamics in distributed developer teams and identifies

drivers that correlate with retention and integration. L. Bacchiani [2] proposes proactive–reactive global scaling

for microservices and evaluates SLO attainment against purely reactive baselines. M. Cabane [3] measures the

performance impact of event-driven architecture under realistic workloads. V. Cardellini [4] surveys runtime

adaptation in data-stream processing with classifications for elasticity mechanisms and evolution strategies. R.

Maharjan [5] presents a case study on monolith-to-microservices decomposition with representation learning and

clustering that recovers deployable service cuts. W. Meijer [6] experimentally evaluates architectural performance

patterns (e.g., aggregation, pipes-and-filters) in microservices. K. Mochniej [7] compares reactive and imperative

microservices, detailing throughput, latency, and memory characteristics. B. Özkan [8] delivers a systematic

literature review of DDD practices and documentation needs. R. Bhattacharya [9] introduces client-side overload

control with feedback to stabilize latency tails in microservices. S. Zbarcea [10] reports on migration from

American Academic Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) - Volume 103, No 1, pp 453-463

455

asynchronous multi-threading to reactive programming in Java with quantified resource-latency effects.

Methodological approach. Comparative analysis, structured literature synthesis, and evidence mapping were

applied to peer-reviewed works from the last five years (English-language journals/conference venues). Inclusion

criteria focused on studies reporting measurable outcomes or taxonomies applicable to DDD-aligned

decomposition, interaction, execution, and runtime control. Where CQRS is discussed in secondary sources and

practitioner reports summarized by recent reviews of DDD practice, we extract criteria rather than tooling

specifics and tie them to aggregate design and read-model evolution.

3.Results

Domain-driven development (DDD) reorients software work from technology-first execution to business-first

modeling and agreement on language, boundaries, and behavioral contracts. Recent syntheses confirm that

contemporary DDD practice concentrates on bounded contexts, aggregate consistency, context mapping, and

domain events as primary structuring devices, with widespread use in microservice programs and increasing

attention to collaborative modeling workshops and documentation that preserve domain language over time [8].

Empirical evidence from microservice studies adds that architecture-level patterns alter runtime characteristics in

measurable ways, so the “philosophy shift” must be assessed not only by modularity or comprehension gains but

by latency, throughput, and resource profiles under realistic load [6].

Separation by business boundary and its operational effects. Systematic reviews depict DDD adoption as a way

to align organizational teams and service ownership with coherent boundaries; results show frequent pairing of

bounded contexts with microservice units, context maps to govern inter-service collaboration, and domain event

streams to decouple change [8]. Where DDD is paired with event-driven architecture (EDA), controlled

experiments report that asynchronous, event-mediated pipelines tend to cut tail-latency and improve elasticity

relative to strictly synchronous request/response, while introducing messaging overheads and additional runtime

components that affect cold-start behavior and memory footprints [3]. In microservices that apply gateway

aggregation/offloading or pipes-and-filters—patterns often used to implement context integration—experimental

evaluation finds pattern-specific performance signatures (e.g., bottleneck shifts after aggregation, resource-

utilization inflection points under heterogeneous workloads), underscoring the need to treat architecture tactics as

measurable interventions rather than generic best practices [6].

Case-study results on automated monolith-to-microservices decomposition using representation learning and

clustering provide a concrete path to recover candidate service cuts that often coincide with DDD boundaries. The

evaluated pipeline constructs entrypoint co-existence/existence matrices, embeds call-graph structure, and groups

functionality into deployable units; authors report successful partitioning with face validity against business

functions (Figure 1) [5].

American Academic Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) - Volume 103, No 1, pp 453-463

456

Figure 1: Data-driven decomposition pipeline for identifying microservice candidates aligned with DDD

boundaries [5]

At the portfolio scale, state-of-the-art reengineering surveys consolidate techniques that mix static and dynamic

analysis with domain knowledge to plan stepwise extraction, reinforcing the finding that boundary discovery

benefits from both code-level signals and domain language [2].

Event-driven vs. synchronous collaboration across contexts. Controlled experiments on EDA quantify when event

propagation outperforms direct synchronous calls: workloads with bursty fan-out see more stable response-time

distributions and fewer incast-induced stalls under feedback-aware event pipelines, at the cost of extra broker hops

and serialization overhead [3]. Complementary work on client-side overload-aware balancing for microservices

shows that pushing load-shedding signals into the balancing layer stabilizes latencies and narrows tails without

central coordination, supporting DDD’s preference for local autonomy between contexts during overload and

failure [9]. The combined result suggests a modeling rule of thumb: define inter-context relationships by domain

contracts first, then choose synchronous vs. event-driven interaction based on fan-out, back-pressure needs, and

recovery semantics rather than stylistic preference [3, 9].

CQRS for write/read separation across domain boundaries. CQRS complements DDD by keeping command

handling and invariant checks inside aggregates while allowing read models to denormalize, precompute, and

scale independently. The pattern fits read-heavy products, multi-view UIs, auditability requirements, and long-

running reporting where fresh writes do not require synchronous projection of every view. It underperforms when

the domain relies on tight, synchronous read-after-write semantics or when the domain model remains small and

cohesive enough for a single data model. Effective CQRS practice hinges on explicit contracts for read models

(schemas, SLAs for staleness), idempotent projections, and backfills for replays; event publication is a convenient

American Academic Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) - Volume 103, No 1, pp 453-463

457

transport but not a prerequisite.

Run-time adaptation for stream-centric domains. A comprehensive survey of data-stream processing identifies

matured mechanisms for elasticity (operator migration, scale-out/in, topology reconfiguration) and classifies

control strategies by triggers and objectives; these mechanisms directly support DDD designs that treat domain

events as first-class data with isolation of stateful operators per bounded context. Results emphasize combining

autoscaling with schema/version evolution and contract testing to curb ripple effects across context boundaries

during adaptation [4].

Scaling and resource governance across contexts. Recent experimentation on proactive–reactive global scaling

shows that orchestrators combining prediction with feedback reach target utilization with fewer SLO breaches

and improved resource efficiency relative to purely reactive baselines; this supplies a runtime complement to

DDD’s compile-time boundary contracts by preserving service quality during demand shifts without eroding

ownership lines [2]. When DDD systems adopt client-side overload control and hybrid autoscaling together,

studies report narrower latency distributions and more stable capacity planning, which simplifies domain-level

SLOs associated with each bounded context [2, 9].

Human-centric outcomes: onboarding and model comprehension. A field study of virtual onboarding for

distributed developer teams finds that structured knowledge delivery and tool readiness correlate with lower

turnover intention and higher perceived integration; the introduced framework formalizes onboarding drivers and

obstacles in remote settings [1]. Reactive execution helps when endpoints spend most of the time waiting on

external I/O or multiplexing many slow upstreams; in compute-centric flows it rarely pays off. Treat reactive

internals as an execution tactic subordinate to aggregate design and interaction contracts rather than as a universal

baseline. Clear domain boundaries and stable language reduce support burden by shrinking translation work and

unintended coupling across teams. Shared artifacts and explicit ownership structures correlate with higher day-to-

day engagement in implementation, since decisions map cleanly to domain terms and are easier to defend in

reviews.

Synthesis for DDD as a shift in project philosophy. Across the reviewed evidence, the development flow moves

from “implement features” to “consolidate domain knowledge, then implement” with measurable architectural

consequences:

i) boundary-first decomposition guided by domain language, supported by decomposition pipelines where

needed;

ii) interaction styles chosen to stabilize tail-latency and constrain coupling between contexts;

iii) execution models selected per domain workload shape, with reactive pipelines reserved for high-

concurrency I/O and imperative paths retained for transactional aggregates;

iv) runtime adaptation and autoscaling layered beneath domain contracts to sustain SLOs without breaking

ownership.

American Academic Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) - Volume 103, No 1, pp 453-463

458

4.Discussion

The synthesis positions domain-driven development as a governance frame for aligning structural boundaries,

interaction styles, and runtime control with the semantics of a business domain. Systematic evidence places

bounded contexts, aggregates, and ubiquitous language at the center of successful programs and reports that teams

sustain these choices by combining documentation with architectural mechanisms that protect autonomy during

traffic and change surges [8]. Studies on microservice performance patterns and event-driven pipelines show that

the philosophical shift only yields durable gains when decomposition and interaction tactics are paired with

measurement-guided runtime controls; otherwise coupling reappears through hidden queues, ad-hoc gateways,

and incidental synchronization [3, 6, 9]. These results justify treating DDD decisions as hypotheses that require

both socio-technical validation (language, ownership, onboarding) and empirical verification under realistic load

profiles. Within this frame, CQRS supplies a compact way to decouple read evolution from transactional integrity

of aggregates, provided that projection lag and schema governance are treated as first-class operational

concerns.From an interpretive standpoint, the consolidated evidence points to three clusters of outcomes that are

directly relevant for practitioners. First, portfolio structure becomes more stable: services aligned with bounded

contexts tend to evolve together, while cross-cutting changes decline as anti-corruption layers and contractual

APIs mature [5, 8]. Second, runtime behavior shows narrower latency distributions and higher efficiency when

event-driven pipelines, autoscaling, and overload-aware clients are configured in line with domain boundaries and

traffic profiles rather than adopted as generic best practices [2–4, 9]. Third, team dynamics and collaboration

outcomes improve when ubiquitous language, context maps, and ADRs connect architectural decisions to domain

terms: teams report fewer misunderstandings in design discussions and smoother handovers between product and

engineering [1, 8]. The practitioner program that motivated this review followed the same pattern: an initial phase

of collaborative modeling and documentation was succeeded by gradual refactoring of services and scaling

policies, which reduced unplanned cross-team escalations and produced a more predictable delivery cadence.

Boundary discovery and the durability of service cuts. Data-assisted decomposition confirms that code-level

signals and runtime traces can recover service candidates that frequently coincide with domain partitions. A case

study using representation learning over dependency graphs produced groups with face validity against business

functions, supporting a practice where exploratory clustering and event co-occurrence are used to challenge or

corroborate workshop-derived boundaries before irreversible extraction steps [5]. Portfolio-level reviews argue

for combining such analytics with stepwise re-wiring tactics and contract testing to avoid “big-bang” splits that

later erode ubiquitous language with translation objects and brittle anti-corruption layers [2, 4]. In short, boundary

proposals benefit from a two-pass approach: first by domain workshops and context maps [8], then by quantitative

probes that detect cross-cutting hotspots prior to migration [5].

In relation to earlier studies, the present synthesis narrows several gaps that remain in the individual strands of

literature. Özkan and his colleagues [8] chart adoption patterns for DDD and stress the need for sustained

documentation, but they stop short of linking these socio-technical artifacts to concrete runtime mechanisms such

as autoscaling, overload control, or stream reconfiguration. Cardellini and his colleagues [4] and Bacchiani and

his colleagues [2] examine adaptation and global scaling for data-stream and microservice platforms yet treat

domain modeling only peripherally. Meijer and his colleagues [6], Cabane and Kleinner [3], Mochniej and

American Academic Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) - Volume 103, No 1, pp 453-463

459

Badurowicz [7], and Zbarcea and his colleagues [10] focus on performance trade-offs for architectural and

implementation styles, while Bhattacharya and his colleagues [9] investigate overload-aware load distribution,

again without grounding these results in DDD constructs. By aligning these contributions around bounded

contexts, aggregates, and CQRS-oriented read models, the present review offers a unifying frame in which

findings from performance engineering, adaptive systems, and socio-technical onboarding research reinforce one

another instead of remaining isolated observations tied to specific tools or platforms.

Interaction styles across contexts: selecting for workload shape. Empirical studies of event-driven architecture

(EDA) report more stable tail behavior in bursty workloads and under fan-out, balanced against

broker/serialization overhead and operational components that affect cold starts and observability [3]. Pattern-

evaluation work for microservices finds signature trade-offs for integration tactics (e.g., gateway aggregation vs.

pipes-and-filters), implying that DDD’s context relationships should be mapped to interaction styles only after

profiling expected concurrency, request amplification, and back-pressure needs [6]. Client-side overload control

with feedback to balancers narrows latency distributions without central coordination, which preserves the local

autonomy DDD expects between contexts during partial failures [9]. Reactive execution inside a context tends to

reduce memory consumption and 90th-percentile latency for I/O-bound flows, while benefits shrink or invert for

compute-bound paths and complex read patterns; migration studies caution against blanket adoption and

recommend targeted application where concurrency and waiting dominate [7, 10]. Table 1 summarizes a selection

guide grounded in these findings and is intended for design reviews between domain and platform leads.

American Academic Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) - Volume 103, No 1, pp 453-463

460

Table 1: Interaction style selection across bounded contexts (evidence-based guide) (compiled by the author

based on [3, 4, 6-10])

Workload signature

in/among contexts

Preferred interaction Rationale Caveats

Bursty fan-out from one

context to many

consumers

Event-driven

publishing with durable

broker

Smooths bursts, decouples

producers/consumers,

stabilizes tails

Broker hops and serialization

overhead; observability

complexity

Strict transactional

workflow within one

aggregate

Synchronous

request/response

Simple failure semantics and

transactional clarity for a

single consistency boundary

Coupling if used across

aggregates; avoid cross-context

ACID

High-concurrency, I/O-

bound pipelines inside a

context

Reactive handlers and

back-pressure

Improved concurrency with

lower RAM and narrower

p90 latency

Debuggability and tooling; not a

universal throughput win

Read-heavy product

areas with multiple

views and weak read-

after-write coupling

CQRS with

denormalized read

models (optionally

event sourcing for

audit)

Independent scaling and

evolution of queries; simpler

command path and clearer

aggregate invariants

Dual-model complexity;

projection lag and backfill

procedures; governance of read-

model schemas

Stream processing with

stateful operators across

events

Event streams + elastic

DSP operators

Operator-aware scale-

out/migration; contract-based

evolution

Requires schema/version

discipline and contract testing

Overload or partial

failure at edges

Client-side balancing

with overload feedback

Narrows latency tails without

central coordination

Requires fine-tuned

shedding/admission signals

Autoscaling and adaptation mechanisms provide the operational complement to compile-time boundaries. A

proactive–reactive scaling approach synthesizes configuration-level reconfigurations to meet SLOs with fewer

breaches than purely reactive baselines, reducing the pressure to widen service contracts during demand spikes

Reference [2]. In stream-centric domains, operator migration, elastic state management, and topology

reconfiguration give teams a controlled vocabulary for change at runtime, provided that schema and version

evolution are treated as first-class contracts between contexts [4]. Combined with overload-aware client balancing,

these controls keep bounded contexts operationally independent while still collaborating through durable contracts

Reference[2, 9].

Human outcomes and documentation practice. Virtual onboarding research correlates structured knowledge

delivery with lower turnover intention and faster role integration for developers [1]. DDD programs operationalize

this through a maintained domain glossary, context maps, and decision records that explain why boundaries,

American Academic Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) - Volume 103, No 1, pp 453-463

461

contracts, and interaction styles exist; the literature review on DDD explicitly highlights the need to

institutionalize ubiquitous language to sustain comprehension as teams evolve [8]. Table 2 consolidates evidence-

backed documentation and governance practices that support maintainability and onboarding in distributed

product teams.

Table 2: Documentation and governance practices that sustain DDD outcomes (compiled by the author based

on [1, 2, 4-10])

Practice / artifact Intended outcome Evidence-backed notes

Ubiquitous language glossary +

context map

Faster comprehension and

consistent naming across

teams

SLR stresses sustained language and boundary

documentation for effectiveness

Architecture decision records

(ADRs) linking domain contracts to

interaction style

Traceable rationale during

refactors and audits

Pattern evaluations show performance signatures

vary; ADRs prevent cargo-cult reuse

Decomposition analytics

(dependency graphs, clustering)

used prior to extraction

Higher boundary fidelity,

fewer cross-cuts

Case study shows data-driven clusters align with

business functions; use to challenge workshop cuts

Proactive–reactive autoscaling

policies as part of service SLOs

SLO stability without

widening contracts

Fewer breaches than purely reactive baselines in

microservice settings

Contract testing and

schema/versioning for event

streams

Safer evolution across

contexts

Survey classifies runtime adaptation and stresses

contract maintenance

Onboarding kits that embed

glossary, context map, and service

playbooks

Lower turnover intention

and faster time-to-

effectiveness

Onboarding study correlates structured, tool-ready

materials with improved retention indicators

Overload-aware client balancing

patterns in platform guidelines

Latency tail control under

burst and imbalance

Feedback-driven balancing stabilizes response

times without centralized metadata

Reactive vs. imperative decision

guide per service endpoint

Targeted use of reactive

where workload benefits

are proven

Comparative and migration studies caution against

blanket adoption

Not all components of the evidence base carry the same weight, and several restrictions shape the interpretation

of the synthesized results. The primary corpus consists of English-language, peer-reviewed publications from

roughly the last five years, complemented by a small number of recent preprints. Studies that report negative

American Academic Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) - Volume 103, No 1, pp 453-463

462

outcomes or neutral experiences with DDD, CQRS, or related architectural tactics are likely underrepresented,

because such work tends to appear less often in archival venues. The empirical foundations are mixed: controlled

experiments on performance patterns, targeted evaluations of event-driven pipelines, and single-program

migration studies dominate [2–7, 9, 10], whereas long-term longitudinal observations across entire enterprise

portfolios remain rare. Quantitative evidence for the practitioner program referenced in this article is based on

internal reports and is available only in aggregated form, which limits reproducibility and independent

verification.

Threats to external validity arise from the technological and organizational scope of the reviewed work. Most

measurements concern microservice and data-streaming platforms in cloud-native environments and involve

organizations that already operate with a certain level of automation, monitoring, and deployment maturity.

Conclusions transfer less directly to monolithic systems, legacy integration landscapes, or teams with limited

observability and weak separation of ownership. CQRS-related guidance relies largely on secondary sources and

conceptual analyses rather than on head-to-head experiments isolating the effect of read/write separation, so

prescriptions for or against CQRS in borderline domains should be treated as hypotheses to be validated through

local experiments, canary deployments, and continuous profiling. These constraints argue for incremental

adoption of DDD and CQRS with feedback from measurements and incident reviews, instead of one-time

redesigns based solely on published results and generalized experience reports.

5.Conclusion

Boundary-first thinking anchors the change in project philosophy: ubiquitous language and context maps precede

implementation, while data-assisted decomposition validates proposed cuts before extraction. Interaction style

selection follows workload shape rather than fashion: event-driven pipelines suit bursty fan-out and decoupling

needs; synchronous calls serve narrow, transactional aggregates; reactive execution benefits I/O-bound flows but

not every compute-heavy path. Runtime governance complements compile-time design through predictive-

reactive autoscaling and overload-aware balancing that preserve autonomy and narrow latency tails during

demand shifts. Documentation and onboarding practices—glossary, context map, ADRs, contract tests, and

schema/version discipline—sustain comprehension and reduce re-coupling as teams evolve. The combined

workflow delivers reproducible criteria for partitioning, collaboration, execution choice, and operational control,

aligning day-to-day engineering with business semantics while retaining measurable performance and

maintainability in enterprise portfolios. The same artifacts lower support costs and raise team engagement by

keeping change localized and language consistent across product areas.

References

[1]. Akdur, G., Aydın, M. N., & Akdur, G. (2024). Understanding virtual onboarding dynamics and developer

turnover intention in the era of pandemic. Journal of Systems and Software, 216, 112136.

https://doi.org/10.1016/j.jss.2024.112136

[2]. Bacchiani, L., Bravetti, M., Giallorenzo, S., Gabbrielli, M., Zavattaro, G., & Zingaro, S. P. (2025).

Proactive–reactive microservice architecture global scaling. Journal of Systems and Software, 220,

American Academic Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) - Volume 103, No 1, pp 453-463

463

112262. https://doi.org/10.1016/j.jss.2024.112262

[3]. Cabane, M., Kleinner, F. (2024). On the impact of event-driven architecture on performance: an

exploratory study. Advance online publication. 153(C), 52-69. DOI:10.1016/j.future.2023.10.021

[4]. Cardellini, V., Lo Presti, F., Nardelli, M., & Russo Russo, G. (2022). Runtime adaptation of data stream

processing systems: The state of the art. ACM Computing Surveys, 54(11s), Article 237, 1-36.

https://doi.org/10.1145/3514496

[5]. Maharjan, R., Sooksatra, K., Cerny, T., Rajbhandari, Y., & Shrestha, S. (2025). A Case Study on

Monolith to Microservices Decomposition with Variational Autoencoder-Based Graph Neural Network.

Future Internet, 17(7), 303. https://doi.org/10.3390/fi17070303

[6]. Meijer, W., Trubiani, C., & Aleti, A. (2024). Experimental evaluation of architectural software

performance design patterns in microservices. Journal of Systems and Software, 218, 112183.

https://doi.org/10.1016/j.jss.2024.112183

[7]. Mochniej, K., & Badurowicz, M. (2023). Performance comparison of microservices written using

reactive and imperative approaches. Journal of Computer Sciences Institute, 28, 242–247.

https://doi.org/10.35784/jcsi.3698

[8]. Özkan, B., Babur, Ö., & van den Brand, M. G. J. (2025). Domain-driven design: A systematic literature

review. Journal of Systems and Software. Advance online publication.

https://doi.org/10.1016/j.jss.2025.112537

[9]. Bhattacharya, R., Gao, Y., & Wood, T. (2024). Dynamically balancing load with overload control for

microservices. ACM Transactions on Autonomous and Adaptive Systems, 19(4), Article 22, 1-23.

https://doi.org/10.1145/3676167

[10]. Zbarcea, S., Kiselev, V., & Kiselev, A. (2024). Migrating from developing asynchronous multi-

threading programs to reactive programs in Java. Applied Sciences, 14(24), 12062.

https://doi.org/10.3390/app142412062

