

362

American Academic Scientific Research Journal for Engineering, Technology, and Sciences

ISSN (Print) 2313-4410, ISSN (Online) 2313-4402

https://asrjetsjournal.org/index.php/American_Scientific_Journal/index

Complex Methods of Static Code Analysis in Go: Combination of

Classical Approaches and Modern Tools

Denis Isaev*

Engineering Director at Yandex Cloud,Moscow, Russia

Email: solovyeva.vasilisa13@gmail.com

Abstract

The paper explores comprehensive approaches to static code analysis for Go, highlighting both foundational

theory and advanced practical applications. After examining theoretical constructs—such as abstract syntax

trees and rule-based detection—this work presents an overview of current trends, including aggregators like

GolangCI-Lint. Attention is given to integrating specialized linters (e.g., misspell, unparam, prealloc, bearer) to

bolster detection accuracy and address security vulnerabilities. Through detailed practical examples, the article

illustrates how automated reports in pull requests facilitate early bug identification and remediation.

Configuration strategies for continuous integration and delivery (CI/CD) pipelines are also outlined, focusing on

harnessing multi-layered analysis for improved coverage. Concluding remarks emphasize the importance of

combined static analysis tools, domain-specific checkers, and regular inspections to achieve high levels of

reliability, readability, and security in Go codebases.

Keywords: Go language; static analysis; linters; aggregators; code quality; CI/CD; security; performance

optimization.

1.Introduction

With the rising popularity of the Go programming language [1, 2] and its extensive adoption in building high-

performance, scalable systems, the need for reliable methods to ensure code quality and security becomes

increasingly urgent. Among the tools currently available for such control, static code analysis stands out for its

ability to detect potential defects, vulnerabilities, and style violations in the early stages of software

development [3, 4]. Identifying problems at an early phase not only reduces the effort required for subsequent

fixes but also contributes to the overall robustness of the final product [5].Go has gained its popularity thanks to

features such as simple syntax, built-in concurrency mechanisms, and a rich ecosystem of libraries [1].

--

Received: 7/9/2025

Accepted: 9/9/2025

Published: 11/19/2025

--

* Corresponding author.

https://asrjetsjournal.org/index.php/American_Scientific_Journal/index

American Academic Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) - Volume 103, No 1, pp 362-372

363

Nonetheless, even a user-friendly language demands rigorous code review to prevent regressions and bugs.

Manual checks of large codebases can be both labor-intensive and prone to oversight. Consequently, the

automation offered by static analysis tools has become a cornerstone for modern software development

processes.

A variety of foundational works discuss both the theoretical underpinnings and practical techniques of static

analysis. Early research on lexical and syntactic parsing, abstract syntax trees, and rule-based checks is provided

by Hopkroft and his colleagues [3], establishing the formal language models upon which most static analysis

frameworks are built. Subsequent studies have focused on overcoming the challenges of false positives and false

negatives and on developing specialized analyzers capable of handling complex language features [4, 5, 6].

Empirical observations on the use of static analysis in Go-based projects indicate that combining multiple linters

can be particularly beneficial. Examples include GolangCI-lint, which aggregates several checkers, and

additional specialized tools like misspell and prealloc, which address specific categories of issues. Moreover,

some development teams employ automated static checks directly in pull requests, thus integrating continuous

feedback and promoting timely code improvements.

Several structured reviews of Go-specific analyzers [7,9] have categorized available solutions into standalone

analyzers and aggregators, elucidating their design principles and strengths. The specialized focus on data-flow

vulnerabilities [9] underscores that many classical analyzers do not cover certain complex scenarios, such as

unsafe pointer operations. Against this backdrop, the present study aims not only to characterize existing

solutions but also to demonstrate a broader practical approach for their combined application in real-world

development pipelines.

A closer examination of the cited structured reviews reveals a common focus on categorization and feature

comparison. Although invaluable for understanding the landscape of available tools, these studies often stop

short of demonstrating the practical synergies and integration complexities involved in a real-world CI/CD

pipeline. For instance, while they might describe both an aggregator like GolangCI-Lint and a security scanner

like bearer, the necessity of their combined application to cover security gaps left by general-purpose checks is

not always the central focus. This study seeks to bridge that specific gap by focusing on the how—the practical

implementation and configuration of a multi-layered strategy.

The aim of this research is to enhance and expand the practical techniques for static code analysis of Go projects

by drawing upon a wide range of contemporary studies and established best practices [1,9].

2. Theoretical foundations and modern trends in Go static analysis

Static analysis of Go code involves interpreting program structure without executing it, relying on abstract

syntax trees (ASTs) and predefined rules to identify potential defects or deviations from best practices [3, 5, 6].

Recent works emphasize that despite improvements in tool accuracy, certain limitations persist due to the

inherent complexity of algorithmic verification [4, 9].A key theoretical challenge is the absence of a universally

accepted mathematical model that precisely captures all possible algorithmic behaviors [3, 5]. As a result, many

American Academic Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) - Volume 103, No 1, pp 362-372

364

analyzers rely on approximations, which can produce both false positives (where a correct segment of code is

flagged as erroneous) and false negatives (where an actual defect goes undetected). This limitation underscores

the need for ongoing refinement of static analysis tools and the importance of complementary testing

methodologies, such as runtime checks or dynamic analysis [4].

Static analysis in Go typically proceeds by parsing source files into an AST, then traversing the AST to apply

pattern-matching rules or more advanced data-flow heuristics [1, 2]. Certain analyzers also integrate type

inference or symbolic execution for deeper inspection of possible program states [9]. Nevertheless, the

complexity of concurrency in Go—especially channels and goroutines—can further complicate a purely static

approach, sometimes requiring partial instrumentation or specialized concurrency-focused checkers [4, 7].

In an effort to categorize the wide array of available tools, researchers have constructed solution maps showing

how different analyzers intersect or are fully subsumed by comprehensive aggregators [2].

Among the available solutions, GolangCI-Lint stands out as one of the most prominent aggregators. It combines

multiple built-in linters, including staticcheck, misspell, and prealloc, thus covering a broad set of checks

ranging from stylistic issues to potential performance optimizations [7, 8]. Its main strengths include the ease of

configuration through a single .golangci.yml file and the ability to disable or enable specific linters. However,

GolangCI-Lint may produce a high volume of alerts, some of which are false positives; fine-tuning of rules is

therefore vital to minimize noise [5, 6].

Certain standalone analyzers like unparam (for detecting unused function parameters) and misspell (for

identifying common typos) integrate seamlessly into aggregator workflows [7, 9]. These tools excel in their

targeted domains but may offer limited utility for broader or more nuanced checks, such as data-flow or

concurrency issues. Additionally, prealloc focuses on slice optimizations, highlighting places in code where

preallocated slices could reduce memory overhead. While beneficial for performance-sensitive projects, prealloc

warnings are not always universally applicable; developers must confirm whether such optimizations align with

the overall design [4].

Beyond these widely known options, other aggregators, such as goreporter or gometalinter, often rely on the

same underlying analyzers present in GolangCI-Lint. Consequently, their outputs can be largely redundant,

although some provide distinct reporting interfaces [2]. Tools like bearer aim to identify security-sensitive

patterns related to file permissions, external commands, and potential data leaks [9]. These specialized analyzers

complement broader aggregators by focusing on intricate vulnerabilities often overlooked by generic checks.

However, their coverage may be narrower, demanding additional tools for a more comprehensive audit.

The table below (Table 1) summarizes key features, advantages, and drawbacks of major static analysis

solutions for Go, reflecting both aggregators and standalone linters referenced in the literature and open-source

documentation.

American Academic Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) - Volume 103, No 1, pp 362-372

365

Table 1: Key features, advantages, and drawbacks of major static analysis solutions for Go [2, 7-9]

Tool /

aggregator

Key features Advantages Limitations

GolangCI-Lint Aggregates multiple

linters (e.g.,

staticcheck, misspell,

etc.)

Centralized configuration;

broad coverage of styling,

correctness, and performance

checks

Possible over-reporting; demands rule

fine-tuning to reduce noise

unparam Detects unused

parameters

Pinpoints potential code smells

and simplifications

Limited to one specific check; no

concurrency or data-flow analysis

misspell Identifies common

typos

Fast, simple detection of

spelling mistakes, improving

readability

Does not address deeper semantic errors

prealloc Suggests slice

preallocation

Helps optimize memory usage

in performance-critical

segments

May be excessive for smaller-scale or

non–performance-critical projects; can

produce low-impact warnings

bearer Scans for security

patterns (e.g., file

permissions, leaks)

Detects specific vulnerabilities

(command injection, insecure

file handling)

Coverage limited to certain classes of

security flaws; may require additional

tools for concurrency or cryptography

goreporter Aggregator calling

many of the same

linters as GolangCI-

Lint

Combined output for multiple

checks, potential for a single

integrated report

Often duplicates results from

GolangCI-Lint; minor differences in

reporting style

gometalinter Another aggregator

relying on existing

standalone linters

Historical aggregator used

before GolangCI-Lint; can run

multiple checks in one pass

Less actively maintained; overlaps

heavily with GolangCI-Lint

In conclusion, the modern trend in Go static analysis leans toward aggregator solutions that consolidate multiple

linters, thus reducing integration complexity and providing a single interface for configuring and reviewing results

Reference [4, 9]. At the same time, specialized tools remain essential for targeting specific types of errors, such

as security vulnerabilities or unused parameters. Striking a balance between a broad-scope aggregator and

carefully selected supplemental analyzers can yield a comprehensive and efficient static analysis pipeline.

3. Expanded practical approach based on prior work

In many real-world Go projects, static analysis is implemented as an automated process integrated into

development workflows, including continuous integration (CI) pipelines and pull request reviews [7, 9].

Several practical examples illustrate the added value of static analysis in maintaining code quality and security.

Below are snippets and explanations adapted from a documented workflow involving the GolangCI-Lint

aggregator, along with additional specialized linters. The referenced code listings show how issues like unused

parameters, typos, potential data leaks, and more were discovered and addressed.

American Academic Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) - Volume 103, No 1, pp 362-372

366

Example 1: Detecting Unused Parameters (unparam)

$ golangci-lint run --no-config --disable-all -E unparam --print-linter-name=false

syntax/printer.go:134:50: (*printer).addWhitespace - text is unused

func (p *printer) addWhitespace(kind ctrlSymbol, text string) {

 ^

ssa/dom_test.go:165:40: benchmarkDominators - size always receives 10000

func benchmarkDominators(b *testing.B, size int, bg blockGen) {

 ^

Figure1

In these findings, the parameter text in the addWhitespace function is never used, and the parameter size in

benchmarkDominators is statically set to 10000 across different test scenarios. Although such issues might not

always break functionality, they contribute to code clutter and can obscure the intent of the software [5, 6].

Renaming variables with _ (blank identifier) or removing them altogether can improve clarity.

Example 2: Identifying Typos (misspell)

Another linter, misspell, quickly flags common spelling mistakes:

$ time golangci-lint run --no-config --disable-all -E misspell --print-linter-

name=false

config/services/servicesConfig.go:60:20: compability is a misspelling of

compatibility

 // Keep backwards compability.

 ^

helpers/language.go:49:24: referenece is a misspelling of reference

 // absolute directory referenece. It is what we get.

 ^

Figure2

Despite their seeming triviality, such errors can degrade the readability of code and documentation, potentially

hindering collaboration [1, 2]. Configuring the locale for misspell (e.g., US or UK) ensures consistent spelling

throughout the project.

Example 3: Encouraging Preallocation (prealloc)

For certain performance-critical scenarios, prealloc suggests preallocating slices:

American Academic Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) - Volume 103, No 1, pp 362-372

367

func (gcToolchain) pack(b *Builder, a *Action, afile string, ofiles []string) error {

 var absOfiles []string

 for _, f := range ofiles {

 absOfiles = append(absOfiles, mkAbs(a.Objdir, f))

 }

 // ...

}

Replacing the above with:

absOfiles := make([]string, 0, len(ofiles))

Figure3

can, in theory, reduce allocations in memory-intensive loops. However, excessive micro-optimizations may not

always justify added complexity [4].

Beyond these specific linters, the CI system generated comprehensive pull request reports, indicating newly

introduced issues and referencing code lines requiring attention [8]. According to reported metrics, the frequency

of unaddressed style warnings, typos, and minor performance concerns decreased significantly once developers

began consistently reviewing these automated reports.

A noteworthy observation is that certain problems—such as insecure file handling or potential command

injection—were not covered by the default set of linters in GolangCI-Lint [9]. Consequently, additional security-

focused analyzers (for instance, bearer) were introduced to flag vulnerabilities related to file permissions,

unsanitized user input, or unsafe deserialization [2, 7].

In practice, a multilayered approach harnessing both comprehensive aggregators and specialized security linters

has proven advantageous. For example, GolangCI-Lint performs broad checks across style, correctness, and minor

performance issues, while a targeted linter like bearer inspects potential security hazards. This synergy reduces

the likelihood of missing critical classes of bugs and yields more actionable reports [3, 9].

Moreover, concurrency-focused static analyzers—though fewer in number—complement these general tools by

catching Goroutine mismanagement and channel misuse. Incorporating specialized concurrency checks can avert

complex race conditions and deadlocks, issues often overlooked by purely syntactic or rule-based analyzers [4,

6]. Ultimately, a well-structured combination of general-purpose aggregators, domain-specific linters, and

targeted security or concurrency checks broadens the coverage of static analysis. Such layering also helps mitigate

the risk of false negatives that would otherwise slip through a single-tool system [5].

In summary, real-world experience with GolangCI-Lint, unparam, misspell, prealloc, and additional niche

analyzers confirms the value of a multi-analyzer strategy. Pull request–based workflows, bolstered by aggregated

reporting, have demonstrated a measurable improvement in code consistency, maintainability, and security

American Academic Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) - Volume 103, No 1, pp 362-372

368

posture [2, 7, 8]. As Go evolves and new static analysis techniques emerge, adopting a layered approach remains

a robust method to ensure high-quality, secure software development.

4. Practical recommendations and integration examples

Effective static analysis depends not only on the choice of analyzers but also on how these tools are integrated

into development workflows [7, 9]. Achieving a seamless setup often requires deliberate configuration in

continuous integration (CI) pipelines, as well as clear strategies for interpreting and acting on reported findings.In

practice, developers commonly rely on aggregator platforms like GolangCI-Lint to orchestrate multiple linters

and generate a unified report. Additional custom scripts or specialized analyzers (e.g., bearer, prealloc) can be

invoked in parallel, ensuring comprehensive coverage.

4.1. Setup and automation in CI/CD

A common pattern is to incorporate static analysis checks as separate steps in a CI pipeline (e.g., GitHub Actions,

GitLab CI, Jenkins), thus preventing the merging of pull requests that introduce critical defects.

Configuring .golangci.yml plays a crucial role in tailoring GolangCI-Lint to project-specific needs [7]. Below is

a simplified snippet illustrating how to enable specific linters, skip certain directories, and refine concurrency

settings:

 Figure 4

American Academic Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) - Volume 103, No 1, pp 362-372

369

In this configuration, directories commonly containing dependencies or generated code are skipped, reducing

noise from files typically outside manual control. Additionally, each linter’s parameters are fine-tuned to align

with internal development guidelines [1, 2]. For instance, depguard is set up to forbid importing logrus in most

parts of the code, ensuring a consistent logging standard across the project.

Automation in CI/CD involves not only running the static analysis but also publishing the results. According to

the “Report for a GitHub Pull Request” documentation, each integration adds a “Details” link next to the pull

request status. Developers can then click through to view a consolidated report detailing any newly introduced

errors. This workflow encourages early detection of style regressions, unused parameters, or security-related

oversights, forcing teams to address them before code merges into the main branch [6].

4.2. Typical usage scenarios and error analysis

When properly configured, GolangCI-Lint and additional analyzers detect a broad range of issues. For instance,

unparam identifies redundant function parameters, while misspell highlights typographical errors in comments

and documentation. Below is an illustrative code sample—adapted from the prior material—showing how

misconfigurations can manifest:

Figure 5

American Academic Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) - Volume 103, No 1, pp 362-372

370

 Figure 6

1.Unused parameter warning (unparam): The unusedParam flag might never be utilized in the function body, a

situation flagged by unparam. Repeated occurrences of such a pattern could indicate improper design or legacy

code that needs refactoring [5].

2.Spelling or textual issues (misspell): If a developer inadvertently writes “messgae” instead of “message” in the

logs or comments, misspell catches it quickly [1, 2].

Besides these relatively straightforward checks, more complex scenarios involve data-flow analysis or

concurrency patterns [9]. Certain analyzers examine how data travels through functions to uncover potential

null-pointer dereferences, while concurrency-focused tools may detect Goroutines that never terminate or

channels susceptible to deadlocks [4]. However, according to recent reviews [2], not all analyzers excel at

deeper data-flow validation, and specialized solutions—sometimes proprietary—are needed for thorough

concurrency checks.

A classic example involves the risk of dereferencing a nil pointer if an upstream function returns nil under

certain conditions. While plain AST-based linters might not catch this, a more advanced static analyzer or

partial symbolic execution engine could raise an alert [9].

To handle advanced cases, one approach is to integrate a second or third specialized tool alongside GolangCI-

Lint. For instance, a security-focused linter can complement typical checks by examining file I/O and input

sanitization (bearer or other vulnerability detectors), while a concurrency checker addresses Goroutine usage

and potential race conditions [6]. This multi-layer setup, already discussed in the context of expanded

practicality, significantly lowers the risk of missing critical bugs.

In summary, configuring GolangCI-Lint and companion linters in a CI/CD environment fosters continuous

vigilance against both minor and serious coding flaws. By combining aggregator-based checks (unparam,

misspell, prealloc) with specialized or security-focused analyses (bearer, concurrency tools), teams can adopt a

comprehensive, proactive stance on code quality. The final integration step—actionable reports in pull

requests—ensures that every contributor remains accountable for addressing flagged issues, maintaining

elevated standards of clarity, safety, and performance across all code contributions.

The practical examples presented in Sections 2 and 3 confirm the efficacy of this layered strategy. While the

American Academic Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) - Volume 103, No 1, pp 362-372

371

aggregator (GolangCI-Lint) effectively manages common code quality issues like unused parameters or typos ,

its true value is realized as an orchestrator. However, as noted, this broad coverage often fails to detect domain-

specific vulnerabilities, such as insecure file handling or potential command injection. The integration of

specialized analyzers like bearer is therefore not optional but essential for addressing these critical gaps. This

synergistic approach—using an aggregator for breadth and specialized tools for depth—directly mitigates the

risks of false negatives and provides a more robust defense than any single tool could offer, validating the

practical recommendations outlined.

It is important to acknowledge the constraints of this analysis.

1. First, the study focuses on illustrating a combined approach using a representative, popular set of open-

source tools (e.g., GolangCI-Lint, bearer). It does not present an exhaustive benchmark or comparative

review against all available proprietary or alternative static analysis solutions.

2. Second, the assessment of tool effectiveness is qualitative, based on practical integration examples and

documented issue detection (as shown in Section 2) , rather than quantitative metrics such as false

positive/negative rates or performance overhead.

3. Finally, the Go ecosystem and its analysis tools are rapidly evolving; the specific configurations and tools

highlighted represent a robust approach at the time of writing but will require adaptation as new techniques

emerge.

5.Conclusion

In conclusion, this study underscores the crucial role of comprehensive static analysis in modern Go

development. By combining foundational rule-based checking with specialized linters and security-focused

tools, it is possible to detect a wide spectrum of issues—from trivial typographical errors to subtle concurrency

pitfalls. Practical examples and configuration guidelines reveal that multi-layered strategies, integrated into

CI/CD pipelines, can significantly enhance both reliability and maintainability. The evidence gathered confirms

that addressing defects early in the development cycle not only reduces technical debt but also improves

collaboration by delivering actionable insights directly in pull requests. As Go continues to evolve and face

diverse use cases, ongoing refinement of static analysis frameworks remains imperative. Future work could

include deeper data-flow analysis and a tighter coupling of static and dynamic checks, ensuring that emerging

paradigms of concurrency, security, and performance are rigorously addressed.

References

[1]. Esilevsky S. Programming languages of the “new wave”. Go language // System Administrator. - 2021.

- №. 7-8. - С. 65-73.

[2]. Galiev R. M., Evdoshenko O. I. REVIEW OF EXISTING SOLUTIONS FOR STATIC ANALYSIS

OF GOLANG CODE //Inzhenerno-stroitel'nyi vestnik Prikaspiya. - 2024. - №. 2 (48). - С. 73-76.[5]

[3]. Hopcroft D. E., Motwani R., Ullman D. Introduction to the theory of automata, languages and

computation. - 2008.

American Academic Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) - Volume 103, No 1, pp 362-372

372

[4]. Menshikov M. A. Review of static analyzer service models // Proceedings of the Institute of system

programming of the Russian Academy of Sciences. - 2021. - Т. 33. - №. 3. - С. 27-40.

[5]. Koshelev V. K. Formalization of error detection in static symbolic execution // Proceedings of the

Institute of System Programming of the Russian Academy of Sciences. - 2016. - Т. 28. - №. 5. - С.

105-118.

[6]. Afanasyev V. O., Dvortsova V. V., Borodin A.. Е. Static analyzer for languages with exception

handling // Proceedings of the Institute of System Programming of RAS. - 2022. - Т. 34. - №. 6. - С. 7-

28.

[7]. Register of static analyzers //analysis-tools.dev. - Access mode: https://analysis-tools.dev/

[8]. Documentation of the micro project // https://github.com. - Access mode:

https://github.com/zyedidia/micro

[9]. Borodin A. E. et al. Search for vulnerabilities of insecure use of labeled data in the Svace static

analyzer // Proceedings of the Institute of System Programming of the Russian Academy of Sciences. -

2021. - Т. 33. - №. 1. - С. 7-32.

