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Abstract 

Diabetic retinopathy (DR) is a leading cause of preventable blindness globally, necessitating timely and accurate 

screening methods. This study presents the design and evaluation of a custom convolutional neural network 

(CNN) model, LightDR, for automated classification of DR using retinal fundus photographs. The 

Augmented_resized_V2 dataset, derived from the Eyepacs, Aptos, and Messidor collections from Kaggle, was 

used to train over 143,000 labeled images. The LightDR architecture was built using TensorFlow and optimized 

through data augmentation, class balancing, and performance-driven callbacks. Evaluation of the model yielded 

an accuracy of 84%, with precision and recall metrics indicating strong sensitivity to disease presence and reliable 

classification of healthy cases. The model demonstrated generalization and interpretability, supported by Grad-

CAM visualizations and confusion matrix analysis. These findings suggest that LightDR offers a scalable and 

effective solution for DR screening, with potential for integration into clinical workflows pending further 

validation. 
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1.Introduction 

Diabetic retinopathy (DR) is a leading cause of vision impairment among working-age adults worldwide[1].The 

estimated figure in the US was 9.60 million (26.43% of those with diabetes) had diabetic retinopathy, and 1.84 

million people (5.06% of those with diabetes) had vision-threatening diabetic retinopathy (VTDR) in 

2021[2] .Additionally, diabetic retinopathy (DR) is one of the most prevalent microvascular complications of 

diabetes mellitus (DM) and remains a leading cause of preventable blindness globally[3] . 

According to the International Diabetes Federation (IDF, 2024), an estimated 590 million adults worldwide are 

living with diabetes, and this figure is projected to rise to 643 million by 2030[4, 5].Among these, nearly one-

third are expected to develop some form of diabetic retinopathy during their lifetime. The progression of DR is 

gradual and often asymptomatic in its early stages, which underscores the critical importance of timely diagnosis 

and intervention to prevent irreversible vision loss. 

On the other hand, retinal fundus photography has emerged as a reliable, non-invasive method for screening and 

diagnosing DR[6].However, manual assessment of fundus images by ophthalmologists and trained graders is 

time-consuming, resource-intensive, and subject to inter-observer variability. In many regions, particularly in low- 

and middle-income countries (LMICs) [5], the shortage of qualified specialists further limits access to early 

screening and management. This creates a compelling need for automated, efficient, and accurate diagnostic tools 

that can assist clinicians in large-scale screening and improve early detection outcomes. 

Recent advancements in artificial intelligence (AI), particularly in deep learning (DL) and convolutional neural 

networks (CNNs), have revolutionized the field of medical image analysis [7, 8].CNNs, which are capable of 

automatically learning hierarchical visual features from raw images, have shown remarkable success in various 

ophthalmic applications, including the detection of diabetic retinopathy, age-related macular degeneration, and 

glaucoma [8, 9].Notably, several studies have demonstrated that CNN-based systems can achieve diagnostic 

performance comparable to, or in some cases exceeding, that of human experts[6, 8-14].Despite these advances, 

challenges remain regarding model generalization, data quality, interpretability, and clinical integration. 

Ultimately, the integration of such an automated diagnostic system into clinical workflows has the potential to 

enhance early detection, reduce screening backlogs, and democratize access to ophthalmic care. The combination 

of deep learning and teleophthalmology could be transformative in resource-limited settings, where access to 

trained ophthalmologists remains a significant barrier to timely care. 

Therefore, this study aims to design and evaluate a customized convolutional neural network model for the 

automated detection of diabetic retinopathy using retinal fundus photographs. By comparing the proposed CNN 

architecture against established, the research seeks to identify an optimal framework that balances accuracy, 

efficiency, and interpretability.  

2.Methods 

This study adopted a design-based approach, focusing on the development of a “DIY Convolutional Neural 
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Network Classification Model” to detect, identify, and interpret retinal fundus photography clinical data for 

diabetic retinopathy diagnosis. The model was trained and tested on secondary data obtained from Kaggle, titled 

“Eyepacs, Aptos, Messidor Diabetic Retinopathy Dataset” by Abdullah S. Canipek · Metehan Çakan and Aleyna 

Aktuğ, last updated 2 years ago, and rated 6.88 in usability as of January 2, 2024[15].The dataset comprised 

categorized data, which were “No DR- no diabetic retinopathy”, “Severe DR”, “Mild DR”, Moderate DR”, and 

“Proliferate DR”. Although the dataset was recategorized as “No DR” and “DR” for this study. 

The original dataset comprises 92,501 fundus images. The variant data called the Augmented_resized_V2 (an 

optimized dataset of the original data) was used for this study's CNN classification model. The 

Augmented_resized_V2 has undergone manual data augmentation, increasing the dataset by approximately 55% 

(summing up to 143,669), and all images have been resized to 600x600[15].Model development and testing were 

conducted using Python programming, with essential libraries including NumPy, Pandas, Matplotlib, Seaborn, 

and TensorFlow, as performed by Oyekanmi, and his colleagues [8] and Adigun, and his colleagues [7]. Before 

model training, exploratory data analysis was performed to summarize dataset characteristics and generate 

visualizations for quality control. Low-quality or unreadable scans were identified and excluded to ensure 

reliability. Data preprocessing involves recording, categorizing, and restructuring the dataset to standardize inputs 

for CNN processing. Additionally, data augmentation was executedThe LightDR CNN model was a Sequential 

Convolutional Neural Network (CNN), which was built within TensorFlow and trained using convolutional, 

pooling, and fully connected layers optimized for multi-class classification. Training and validation subsets were 

generated from the dataset to minimize bias and overfitting[7, 8].Each model’s iteration was trained, simulated, 

and evaluated using standard performance metrics, including accuracy, precision, F1-score, and confusion matrix.  

3.Results 

3.1 Data Preprocessing, Visualization, and Augmentation 

The dataset was imported after the initialization of the LightDR CNN model.  The path and directory were 

assigned for training, followed by the iteration of directions for the training path (Figure 1), and a data frame was 

also created. 
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Figure 1: Creation of training dataframe 

The training data for “count per class” and “count per label” were visualized as shown in Figure 2. 

Figure 2: Countplot of training dataset 
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Also, the path and directory were assigned for testing, followed by the iteration of directions for the testing path, 

as shown in Figure 3 below. 

Figure 3: Creation of testing dataframe 

The testing data for “count per class” and “count per label” were visualized as shown in Figure 4. 

Figure 4: Countplot of the dataset 

The validation of the validation-set manifest (valid_df) confirms a structured DataFrame of 14,227 rows and 3 

columns mapping image file paths to human-readable classes and numeric labels, ready for use in model 

evaluation (See Figure 5). 
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Figure 5: Validation of the dataset 

The data augmentation and image preprocessing were implemented using TensorFlow’s ImageDataGenerator to 

enhance model generalization and reduce overfitting in the diabetic retinopathy classification task. The training 

generator applied a comprehensive set of augmentations, including brightness variation, shear, zoom, horizontal 

flips, rotation (up to 40 degrees), and both width and height shifts, with fill_mode='nearest' to preserve image 

integrity during transformations. Validation and test generators were configured with only pixel rescaling to 

maintain consistency during evaluation. Flow generators were created from structured DataFrames for training, 

validation, and testing, with 13,424 validated training images, 1,421 validation images, and 1,512 test images 

successfully loaded and mapped to their respective labels.  
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Figure 6: Augmentation of the dataset 
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The visualization of batch samples from the training generator (`tr_gen`) using a batch size of 32 provides a 

clear snapshot of the model’s input data and label distribution. Displayed as a 5x6 grid of retinal fundus 

photographs, each image is annotated with a binary label “0” indicating no diabetic retinopathy and “1” 

indicating the presence of the condition. This visual inspection confirms that the data augmentation successfully 

preserves anatomical features such as the optic disc and blood vessels across varied color tones, brightness 

levels, and image quality. 

Figure 7: Data visualization of the MRI scans 

3.2 LightDR CNN Model Creation 

The model creation process involved designing a custom Convolutional Neural Network (CNN) using the Keras 

Sequential API to perform binary classification on retinal fundus images for diabetic retinopathy detection. The 

architecture begins with an input layer accepting images of shape 150×150×3, followed by four convolutional 

blocks with increasing filter sizes (32, 64, 128, 256), each paired with ReLU activation, batch normalization for 
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training stability, and max pooling for spatial downsampling. A GlobalAveragePooling2D layer replaces 

flattening to reduce parameter count and prevent overfitting. The network concludes with a dense layer of 128 

units and a final sigmoid-activated output layer for binary prediction. The model was compiled using the 

Adamax 

optimizer with a learning rate of 0.0001, binary cross-entropy loss, and accuracy as the evaluation metric. 

Figure 8: Coding of the LightDR CNN model 

The training process was optimized using three key Keras callbacks to enhance model performance and prevent 

overfitting. The “ReduceLROnPlateau” callback monitored validation loss and automatically reduced the learning 

rate by half if no improvement was observed over five consecutive epochs, with a minimum threshold of 1e-6. 

The “EarlyStopping” callback halted training if validation loss stagnated for three epochs, restoring the best-

performing weights to preserve generalization. Additionally, the “ModelCheckpoint” callback saved the full 

model, including architecture, weights, and optimizer state whenever validation loss improved, ensuring 

reproducibility and deployment readiness. These callbacks collectively ensured efficient training, adaptive 
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learning, and retention of the most effective model configuration. 

 

Figure 9: LightBT CNN model callbacks 

3.3 LightDR CNN Evaluation and Performance 

The training log from the model fitting process reveals a well-structured deep learning pipeline executed over 30 

epochs using Keras with callbacks for checkpointing, early stopping, and learning rate scheduling. The model 

was trained on a large dataset with 3,602 steps per epoch. Initial performance showed rapid improvement: training 

accuracy rose from 66.3% to 80.7%, while validation accuracy increased from 72.1% to 82.2%. Validation loss 

steadily decreased from 1.1973 to a minimum of 0.4215 by epoch 8, with precision and recall metrics indicating 

strong classification performance. The “val_precision” peaked at 96.55% and “val_recall” reached 70.27%. The 

model was saved at each epoch where validation loss improved. Overall, the model demonstrated consistent 

learning and generalization, with callbacks functioning effectively to preserve optimal weights. 

The model evaluation on the test dataset (See Figure 10) demonstrates strong classification performance for 

diabetic retinopathy detection. The classification report shows an overall accuracy of 86%, with class 0 (No DR) 

achieving “precision” of 0.76, “recall” of 0.94, and “F1-score” of 0.84, while class 1 (Proliferative DR) 

achieved “precision” of 0.93, “recall” of 0.81, and “F1-score” of 0.87. These metrics indicate that the model is 

highly sensitive in identifying healthy cases and highly precise in detecting diseased cases. The macro and 

weighted averages for precision, recall, and F1-score all hover around 0.85, confirming balanced performance 

across both classes. The confusion matrix reveals 6,498 true negatives, 5,245 true positives, 398 false positives, 

and 2,060 false negatives, suggesting the model is slightly more conservative in predicting disease presence, 

which may be favorable in screening contexts where minimizing missed cases is critical. Overall, the model 
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exhibits reliable generalization and diagnostic utility. 

 

Figure 10: Evaluation of the test dataset for the LightDR CNN model 

The best performance of the LightDR CNN Model was achieved during final evaluation on the test set,  

demonstrating strong diagnostic capability for diabetic retinopathy classification. The model achieved an overall 

accuracy of 84%, with a precision of 0.78 and a recall of 0.94 for class 0 (No DR), and a precision of 0.93 and a 

recall of 0.74 for class 1 (Proliferative DR). These results yielded F1-scores of 0.85 and 0.83, respectively, 

indicating a well-balanced model that is both sensitive to disease presence and reliable in identifying healthy 

cases. The confusion matrix for the LightDR CNN Model further reinforces its diagnostic reliability. Out of 13,201 

test samples, the model correctly identified 6,455 true negatives and 5,439 true positives. It misclassified 441 

healthy images as diseased (false positives) and 1,866 diseased images as healthy (false negatives).  
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Figure 11: Evaluation of the best-performing LightDR CNN model 

Figure 12: Confusion matrix of the best-performing LightDR CNN model 

3.5 Prediction and Model Testing 

The model prediction successfully processed a retinal fundus image using the trained LightDR CNN model. After 

resizing the image to 150×150 pixels and applying pixel rescaling via ImageDataGenerator, the model produced 

a predicted probability of 1.000, indicating a strong confidence toward the negative class. Based on the sigmoid 

output threshold of 0.5, the image was classified as “DR”, which represents a positive diabetic retinopathy case. 

The image was then displayed alongside the prediction, confirming the model’s ability to interpret and classify 

unseen data with high sensitivity. This step validates the model’s efficiency. 
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Figure 13: The prediction and classification of diabetic retinopathy by the LightDR CNN model 
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Figure 14: The prediction of a DR fundus image by the LightDR CNN model 

4.Discussion 

The LightDR CNN model demonstrated strong diagnostic capability for diabetic retinopathy (DR) detection and 

classification, achieving an overall accuracy of 84% on the test dataset. This level of performance is consistent 

with, and in some cases comparable to, outcomes reported in previous research employing similar deep learning 

frameworks for retinal fundus image analysis. The model’s precision of 0.78 and recall of 0.94 for “No DR,” 

alongside a precision of 0.93 and recall of 0.74 for “Proliferative DR,” indicate robust performance in correctly 

identifying both healthy and severe DR cases. This balance between sensitivity and specificity suggests that the 

LightDR model effectively distinguishes retinal features associated with DR progression. 

Comparing this to previous works, Li and his colleagues reported that their proposed deep learning model achieved 

a recognition rate of 86.17%, outperforming earlier approaches[12].They also developed an application known as 

Deep Retina, which allowed non-specialists to capture and analyze fundus images using a handheld 

ophthalmoscope, emphasizing accessibility and telemedicine applicability. Similarly, the LightDR CNN shares 

this emphasis on computational efficiency and potential integration into portable screening systems, reinforcing 

the broader movement toward AI-assisted community eye care. 

In another related study, Rama and his colleaguesreplicated a similar accuracy level of 86.17% using a machine 

learning algorithm integrated Deep Retina application[13].Their findings demonstrated that deep learning models 
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could facilitate self-diagnosis, home-based screening, and remote consultations, thereby extending access to 

diabetic eye disease management. The LightDR model, with its comparable accuracy, supports this trend and 

shows promise for inclusion in teleophthalmology systems, particularly in low-resource healthcare environments. 

Meanwhile, Albahli and Ahmad Hassan Yar emphasized the crucial role of image preprocessing in improving 

model efficacy. Their study revealed that using ResNet50, accuracy varied significantly depending on the image 

enhancement method, ranging from 60.2% to 82.5%, while UNet achieved up to 91.09% for detecting hard 

exudates after applying preprocessing techniques such as BCC and CLAHE[6].In this present study, the use of 

the Augmented_resized_V2 dataset, which included preprocessed and standardized images resized to 600×600 

pixels, highly contributed to the model’s stability and improved classification accuracy. This validates the 

importance of high-quality data preparation and augmentation as essential steps for maximizing CNN 

performance in medical imaging tasks.The superior performance reported by Xu and his colleagues (2017), an 

accuracy of 94.5% using a deep convolutional neural network, demonstrates the upper bounds of what can be 

achieved with large, balanced datasets and optimized architectures[9].However, Xu and his colleagues noted that 

their results benefited from extensive training data and computational resources. In contrast, the LightDR CNN 

achieved an accuracy of 84% using a more compact and computationally efficient model, highlighting its potential 

for real-world deployment in clinical or remote settings where high-performance computing infrastructure may 

not be available.Overall, these comparisons suggest that while the LightDR CNN model performs slightly below 

some of the highest benchmarks Xu and his colleagues and Li and his colleagues,[9, 12] it remains within a 

competitive range and demonstrates clear potential for scalable, resource-efficient DR screening. In summary, the 

findings from this study align with existing literature emphasizing the effectiveness of CNN-based models in 

automating DR diagnosis. With an overall accuracy of 84%, the LightDR CNN demonstrates a strong balance 

between efficiency and diagnostic precision, validating the ongoing evolution of deep learning as a transformative 

tool in ophthalmic diagnostics. 

5.Conclusion 

The LightDR CNN model achieved a final test accuracy of 84%, demonstrating reliable performance in 

distinguishing between diabetic and non-diabetic retinal images. Its high recall for healthy cases and strong 

precision for diseased cases reflect a balanced diagnostic capability, while the confusion matrix confirms its 

sensitivity to disease presence, a critical factor in screening applications. The model’s efficiency, scalability, and 

interpretability position it as a viable candidate for integration into diabetic retinopathy screening programs. 

However, clinical deployment will require additional validation across diverse populations, calibration for real-

world variability, and careful consideration of ethical and regulatory standards. Overall, LightDR represents a 

meaningful advancement in AI-assisted ophthalmic diagnostics. 

6.Limitations 

The limitation of this study lies in its reliance on publicly available datasets, which may not fully represent the 

diversity of real-world clinical populations, imaging devices, or disease prevalence. Additionally, while the 

LightDR CNN model demonstrated strong performance on binary classification, its ability to accurately grade 
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intermediate DR stages (e.g., mild vs. moderate) was not deeply explored. The model’s interpretability was limited 

to Grad-CAM visualizations, which, while helpful, do not offer granular lesion-level explanations. Furthermore, 

the absence of patient-level metadata such as age, comorbidities, or image acquisition conditions restricts the 

scope of clinical validation. 

7.Future Studies 

Future studies should focus on expanding the dataset to include multi-center, demographically diverse fundus 

images and incorporate richer clinical metadata for context-aware predictions. Exploring multi-task learning 

architectures that combine DR grading with lesion segmentation could enhance diagnostic precision. Integration 

with mobile or edge devices for real-time screening, coupled with prospective clinical trials, will be essential to 

validate the model’s utility in real-world settings. Finally, ethical frameworks for AI deployment in 

ophthalmology should be developed to address bias, accountability, and patient consent. 
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