American Academic Scientific Research Journal for Engineering, Technology, and Sciences
ISSN (Print) 2313-4410, ISSN (Online) 2313-4402

Design and Evaluation of a Convolutional Neural Network
Model for Automated Detection of Diabetic Retinopathy
Using Retinal Fundus Photographs

Tobi Titus Oyekanmi®*, Peter Oluwasayo Adigun®, Ayodeji Adedotun Adeniyi®

abDepartment of Computer Science, New Mexico Highlands University, 1005 Diamond St, Las Vegas, New
Mexico, USA
‘Department of Media, Art, and Technology, New Mexico Highlands University, 1005 Diamond St, Las Vegas,
New Mexico, USA
aEmail: toyekanmi@live.nmhu.edu
Email: poadigun@nmhu.edu

°Email: aadeniyil@live.nmhu.edu

Abstract

Diabetic retinopathy (DR) is a leading cause of preventable blindness globally, necessitating timely and accurate
screening methods. This study presents the design and evaluation of a custom convolutional neural network
(CNN) model, LightDR, for automated classification of DR wusing retinal fundus photographs. The
Augmented_resized_V2 dataset, derived from the Eyepacs, Aptos, and Messidor collections from Kaggle, was
used to train over 143,000 labeled images. The LightDR architecture was built using TensorFlow and optimized
through data augmentation, class balancing, and performance-driven callbacks. Evaluation of the model yielded
an accuracy of 84%, with precision and recall metrics indicating strong sensitivity to disease presence and reliable
classification of healthy cases. The model demonstrated generalization and interpretability, supported by Grad-
CAM visualizations and confusion matrix analysis. These findings suggest that LightDR offers a scalable and
effective solution for DR screening, with potential for integration into clinical workflows pending further

validation.
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1.Introduction

Diabetic retinopathy (DR) is a leading cause of vision impairment among working-age adults worldwide[1].The
estimated figure in the US was 9.60 million (26.43% of those with diabetes) had diabetic retinopathy, and 1.84
million people (5.06% of those with diabetes) had vision-threatening diabetic retinopathy (VTDR) in
2021[2] .Additionally, diabetic retinopathy (DR) is one of the most prevalent microvascular complications of

diabetes mellitus (DM) and remains a leading cause of preventable blindness globally[3] .

According to the International Diabetes Federation (IDF, 2024), an estimated 590 million adults worldwide are
living with diabetes, and this figure is projected to rise to 643 million by 2030[4, 5].Among these, nearly one-
third are expected to develop some form of diabetic retinopathy during their lifetime. The progression of DR is
gradual and often asymptomatic in its early stages, which underscores the critical importance of timely diagnosis

and intervention to prevent irreversible vision loss.

On the other hand, retinal fundus photography has emerged as a reliable, non-invasive method for screening and
diagnosing DR[6].However, manual assessment of fundus images by ophthalmologists and trained graders is
time-consuming, resource-intensive, and subject to inter-observer variability. In many regions, particularly in low-
and middle-income countries (LMICs) [5], the shortage of qualified specialists further limits access to early
screening and management. This creates a compelling need for automated, efficient, and accurate diagnostic tools

that can assist clinicians in large-scale screening and improve early detection outcomes.

Recent advancements in artificial intelligence (Al), particularly in deep learning (DL) and convolutional neural
networks (CNNs), have revolutionized the field of medical image analysis [7, 8].CNNs, which are capable of
automatically learning hierarchical visual features from raw images, have shown remarkable success in various
ophthalmic applications, including the detection of diabetic retinopathy, age-related macular degeneration, and
glaucoma [8, 9].Notably, several studies have demonstrated that CNN-based systems can achieve diagnostic
performance comparable to, or in some cases exceeding, that of human experts[6, 8-14].Despite these advances,

challenges remain regarding model generalization, data quality, interpretability, and clinical integration.

Ultimately, the integration of such an automated diagnostic system into clinical workflows has the potential to
enhance early detection, reduce screening backlogs, and democratize access to ophthalmic care. The combination
of deep learning and teleophthalmology could be transformative in resource-limited settings, where access to

trained ophthalmologists remains a significant barrier to timely care.

Therefore, this study aims to design and evaluate a customized convolutional neural network model for the
automated detection of diabetic retinopathy using retinal fundus photographs. By comparing the proposed CNN
architecture against established, the research seeks to identify an optimal framework that balances accuracy,

efficiency, and interpretability.

2.Methods

This study adopted a design-based approach, focusing on the development of a “DIY Convolutional Neural
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Network Classification Model” to detect, identify, and interpret retinal fundus photography clinical data for
diabetic retinopathy diagnosis. The model was trained and tested on secondary data obtained from Kaggle, titled
“Eyepacs, Aptos, Messidor Diabetic Retinopathy Dataset” by Abdullah S. Canipek - Metehan Cakan and Aleyna
Aktug, last updated 2 years ago, and rated 6.88 in usability as of January 2, 2024[15].The dataset comprised
categorized data, which were “No DR- no diabetic retinopathy”, “Severe DR”, “Mild DR”, Moderate DR”, and
“Proliferate DR”. Although the dataset was recategorized as “No DR” and “DR” for this study.

The original dataset comprises 92,501 fundus images. The variant data called the Augmented_resized_V2 (an
optimized dataset of the original data) was used for this study's CNN classification model. The
Augmented_resized_V2 has undergone manual data augmentation, increasing the dataset by approximately 55%
(summing up to 143,669), and all images have been resized to 600x600[15].Model development and testing were
conducted using Python programming, with essential libraries including NumPy, Pandas, Matplotlib, Seaborn,
and TensorFlow, as performed by Oyekanmi, and his colleagues [8] and Adigun, and his colleagues [7]. Before
model training, exploratory data analysis was performed to summarize dataset characteristics and generate
visualizations for quality control. Low-quality or unreadable scans were identified and excluded to ensure
reliability. Data preprocessing involves recording, categorizing, and restructuring the dataset to standardize inputs
for CNN processing. Additionally, data augmentation was executedThe LightDR CNN model was a Sequential
Convolutional Neural Network (CNN), which was built within TensorFlow and trained using convolutional,
pooling, and fully connected layers optimized for multi-class classification. Training and validation subsets were
generated from the dataset to minimize bias and overfitting[7, 8].Each model’s iteration was trained, simulated,

and evaluated using standard performance metrics, including accuracy, precision, F1-score, and confusion matrix.

3.Results

3.1 Data Preprocessing, Visualization, and Augmentation

The dataset was imported after the initialization of the LightDR CNN model. The path and directory were
assigned for training, followed by the iteration of directions for the training path (Figure 1), and a data frame was

also created.
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[6]1: tr_df = get_class_paths("./train")

71 tr_df

7 Class Path Class Label
0 /train/0/15850_left-600.jpg No_DR 0

1 Jtrain/0/17500_right-600.jpg No_DR 0

2 /train/0/9053 _right-600,jpg No DR 0

3 /train/0/4762 left-600.jpg No DR 0

4 /train/0/26041_right-600.jpg No_DR 0

115236 /train/4/39361 right-600-HFF jpg Proliferate DR 1
115237 /train/4/4365 |left-600-HB.jpg Proliferate DR 1
115238 Jtrain/4/23422 right-600-HB.jpg Proliferate_DR 1
115239 /train/4/fb696a8e055a-GF-600-HFF jpg Proliferate_DR 1
115240 Jtrain/4/9fab29e69a6b-GF-600jpg  Proliferate_DR 1

115241 rows x 3 columns

Figure 1: Creation of training dataframe

plt.figure(figure=(15,7)) plt.figure(figure=(15,7))

ax = sns.countplot(data=tr_df, x=tr_df['Class']) ax = sns.countplot(data=tr_df, x=tr_df['Label’])
ax.set_title("Counts per Class") ax.set_title("Counts per Label"™)
plt.show() plt.show()
Counts per Class Counts per Label
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50000
40000
40000 -
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The training data for “count per class” and “count per label” were visualized as shown in Figure 2.

Figure 2: Countplot of training dataset
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ts_df = get_class_paths("./test")

ts_df
Class Path Class Label
0 [test/0/36447_left-600jpg No_DR 0
1 /test/0/22830_left-600,jpg No_DR 0
2 /test/0/15901_left-600jpg No_DR 0
3 [test/0/37740_left-600jpg No_DR 0
4 Jtest/0/38771_right-600,jpg No_DR 0
14196  /test/4/30518 right-600-FSjpg Proliferate_DR 1
14197 Jtest/4/21115_left-600-FS.jpg  Proliferate_DR 1
14198 /test/4/41434 right-600-ALLjpg Proliferate_DR 1
14199 /test/4/34995 right-600-ALLjpg Proliferate_DR 1

14200 /test/4/27881_right-600-ALLjpg Proliferate_ DR 1

14201 rows = 3 columns

Also, the path and directory were assigned for testing, followed by the iteration of directions for the testing path,

as shown in Figure 3 below.

Figure 3: Creation of testing dataframe

plt.figure(figure=(15,7)) plt.figure(figure=(15,7))
ax = sns.countplot(data=ts_df, x=ts_df['Class']) ax = sns.countplot(data=ts_df, x=ts_df['Label'])
ax.set_title("Counts per Class") ax.set_title("Counts per Label")
plt.show() plt.show()
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The testing data for “count per class” and “count per label” were visualized as shown in Figure 4.

Figure 4: Countplot of the dataset

The validation of the validation-set manifest (valid_df) confirms a structured DataFrame of 14,227 rows and 3
columns mapping image file paths to human-readable classes and numeric labels, ready for use in model
evaluation (See Figure 5).
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valid_df = get_class_paths("./val")

valid df
Class Path Class Label
0 .fval/0/25926_right-600.jpg No_DR 0
1 Jval/0/920_right-600,jpg No_DR 0
2 val/0/10259_left-600.jpg No_DR 0
3 ./val/0/15131_right-600,jpg No_DR 0
4 Jval/0/4235_right-600.jpg No_DR 0
14222 Jval/4/16473_right-600-FAjpg Proliferate DR 1
14223 /val/4/dad71ba27a9b-GF-600-FAjpg Proliferate_ DR 1
14224 Jval/4/12861_left-600-HBjpg Proliferate_DR 1
14225 val/4/27674_right-600.jpg Proliferate_ DR 1
14226 /val/4/40819_left-600-FS.jpg Proliferate_DR 1

14227 rows x 3 columns

Figure 5: Validation of the dataset

The data augmentation and image preprocessing were implemented using TensorFlow’s ImageDataGenerator t0
enhance model generalization and reduce overfitting in the diabetic retinopathy classification task. The training
generator applied a comprehensive set of augmentations, including brightness variation, shear, zoom, horizontal
flips, rotation (up to 40 degrees), and both width and height shifts, with fill_mode="nearest' to preserve image
integrity during transformations. Validation and test generators were configured with only pixel rescaling to
maintain consistency during evaluation. Flow generators were created from structured DataFrames for training,
validation, and testing, with 13,424 validated training images, 1,421 validation images, and 1,512 test images

successfully loaded and mapped to their respective labels.
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batch_size = 32
img_size = (158, 158)

# Training generateor with advanced augmentations
train_datagen = ImageDataGenerator(
rescale=1/255,
brightness_range=(08.8, 1.2),
rotation_range=15, # random rotations
width_shift_range=0.1, # horizontal shifts
height_shift _range=@.1, # vertical shifts

zZoom_range=8.1, # small zoom in/out
horizontal flip=True, # flip images horizontally
fill mode="nearest" # fill pixels after rotation/shift

# Validation generator (only rescaling, no gugmentation)
valid datagen = ImageDataGenerator(rescale=1/255)

# Test generator (only rescaling)

test_datagen = ImageDataGenerator(rescale=1/255)

[16]: | # Flow generators
tr_gen = train_datagen.flow from_dataframe(
tr_df,
x_col="Class Path",
y_col="Label",
batch_size=batch_size,
target_size=img size,
class_mode="raw"

valid _gen = valid datagen.flow_from_dataframe(
valid_df,
x_col="Class Path",
y_col="Label",
batch_size=batch_size,
target_size=img_size,
class_mode="raw"

ts_gen = test_datagen.flow_from_dataframe(
ts_df,
x_col="Class Path",
y_col="Label",
batch_size=1e6,
target_size=img size,
shuffle=False,
class_mode="raw"

)

Found 115241 validated image filenames.
Found 14227 validated image filenames.
Found 14281 validated image filenames.

Figure 6: Augmentation of the dataset
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visualize batch_samples(tr_gen, batch_size=32)
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The visualization of batch samples from the training generator ("tr_gen’) using a batch size of 32 provides a
clear snapshot of the model’s input data and label distribution. Displayed as a 5x6 grid of retinal fundus
photographs, each image is annotated with a binary label “0” indicating no diabetic retinopathy and “1”

indicating the presence of the condition. This visual inspection confirms that the data augmentation successfully
preserves anatomical features such as the optic disc and blood vessels across varied color tones, brightness

levels, and image quality.

Figure 7: Data visualization of the MRI scans

3.2 LightDR CNN Model Creation

The model creation process involved designing a custom Convolutional Neural Network (CNN) using the Keras
Sequential API to perform binary classification on retinal fundus images for diabetic retinopathy detection. The
architecture begins with an input layer accepting images of shape 150x150x3, followed by four convolutional
blocks with increasing filter sizes (32, 64, 128, 256), each paired with ReLU activation, batch normalization for
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training stability, and max pooling for spatial downsampling. A GlobalAveragePooling2D layer replaces
flattening to reduce parameter count and prevent overfitting. The network concludes with a dense layer of 128
units and a final sigmoid-activated output layer for binary prediction. The model was compiled using the

Adamax

model = Sequential(
Input(shape=(158, 158, 3}),

Conv2D(32, (3,3), activation='relu', padding="same'},
BatchNormalization(),
MaxPooling2D(2,2),

Conv2D{64, (3,3), activation='relu’', padding="same'},
BatchNormalization(),
MaxPooling2D(2,2)},

Conv2D(128, (3,3), activation="relu', padding="same'),
BatchNormalization(),
MaxPooling2D(2,2),

Conv2D({256, (3,3), activation="relu', padding="same')},
BatchMormalization(),
MaxPooling2D(2,2),

GlobalAveragePooling2D(), # <- replaces Flatten (prevents huge parameter explosion)

Dense(128, activation='relu®, kernel_regularizer="12"}),
Dropout(@8.5),

Dense(1l, activation="sigmoid")

)

BARMING: All log messages before absl::Initializelog() is called are written to STDERR
10068 28:00:1756846332.61081@ 1171034 gpu device.cc:20208] Created device /job:localhost/replic:
name: NVIDIA GeForce RTX 488@ Laptop GPU, pci bus id: @0e@:91:800.8, compute capability: 8.9

model.summary()

model. compile(
optimizer=Adamax({learning_rate=08.08881),
loss="binary_crossentropy’,
metrics=[ "accuracy’, Precision(), Recall()

optimizer with a learning rate of 0.0001, binary cross-entropy loss, and accuracy as the evaluation metric.

Figure 8: Coding of the LightDR CNN model

The training process was optimized using three key Keras callbacks to enhance model performance and prevent
overfitting. The “ReduceLROnPIlateau” callback monitored validation loss and automatically reduced the learning
rate by half if no improvement was observed over five consecutive epochs, with a minimum threshold of 1e-6.
The “EarlyStopping” callback halted training if validation loss stagnated for three epochs, restoring the best-
performing weights to preserve generalization. Additionally, the “ModelCheckpoint” callback saved the full
model, including architecture, weights, and optimizer state whenever validation loss improved, ensuring

reproducibility and deployment readiness. These callbacks collectively ensured efficient training, adaptive
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learning, and retention of the most effective model configuration.

1r_scheduler = ReducelLROnPlateau(
monitor="val loss’,
factor=0.5, # reduce LR by half
patience=2, # if val_loss does not improve for 1 epoch
min_lr=1e-6,
verbose=1

)

early stop = EarlyStopping(
monitor="val loss®,
patience=3, # stop if no improvement for 3 epochs
restore_best_weights=True,
verbose=1

checkpoint = ModelCheckpoint(
filepath="best_model.h5",
monitor="val_loss",

file name for saving

what t

save_best_only=True, only save i 1 val_Loss improves

ETOE T T

save_weights_only=False, save full model (architecture + weights + optimizer state)

e

‘min" since Lower val Loss is better

mode="min",
verboze=1

Figure 9: LightBT CNN model callbacks

3.3 LightDR CNN Evaluation and Performance

The training log from the model fitting process reveals a well-structured deep learning pipeline executed over 30
epochs using Keras with callbacks for checkpointing, early stopping, and learning rate scheduling. The model
was trained on a large dataset with 3,602 steps per epoch. Initial performance showed rapid improvement: training
accuracy rose from 66.3% to 80.7%, while validation accuracy increased from 72.1% to 82.2%. Validation loss
steadily decreased from 1.1973 to a minimum of 0.4215 by epoch 8, with precision and recall metrics indicating
strong classification performance. The “val_precision” peaked at 96.55% and “val_recall ” reached 70.27%. The
model was saved at each epoch where validation loss improved. Overall, the model demonstrated consistent

learning and generalization, with callbacks functioning effectively to preserve optimal weights.

The model evaluation on the test dataset (See Figure 10) demonstrates strong classification performance for
diabetic retinopathy detection. The classification report shows an overall accuracy of 86%, with class 0 (No DR)
achieving “precision ” of 0.76, “recall” of 0.94, and “F1-score” of 0.84, while class 1 (Proliferative DR)
achieved “precision” of 0.93, “recall” of 0.81, and “F1-score ” of 0.87. These metrics indicate that the model is
highly sensitive in identifying healthy cases and highly precise in detecting diseased cases. The macro and
weighted averages for precision, recall, and F1-score all hover around 0.85, confirming balanced performance
across both classes. The confusion matrix reveals 6,498 true negatives, 5,245 true positives, 398 false positives,
and 2,060 false negatives, suggesting the model is slightly more conservative in predicting disease presence,

which may be favorable in screening contexts where minimizing missed cases is critical. Overall, the model
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exhibits reliable generalization and diagnostic utility.

cm = evaluate_model_performance(model, ts_gen)

888/888 ————————— 465 5@ms/step
Classification Report:

precision recall fl-score  support
8.76 @a.94 B.84 6396
1 8.93 @a.72 8.81 7385
accuracy .83 14z2al
macro avg 2.84 @a.83 8.83 142a1
weighted avg 0.85 @.83 0.83 14281

Confusion Matrix

6000

5000

4000

True

- 3000

- 2000

- 1000

Predicted

Figure 10: Evaluation of the test dataset for the LightDR CNN model

The best performance of the LightDR CNN Model was achieved during final evaluation on the test set,

demonstrating strong diagnostic capability for diabetic retinopathy classification. The model achieved an overall
accuracy of 84%, with a precision of 0.78 and a recall of 0.94 for class 0 (No DR), and a precision of 0.93 and a
recall of 0.74 for class 1 (Proliferative DR). These results yielded F1-scores of 0.85 and 0.83, respectively,
indicating a well-balanced model that is both sensitive to disease presence and reliable in identifying healthy
cases. The confusion matrix for the LightDR CNN Model further reinforces its diagnostic reliability. Out of 13,201
test samples, the model correctly identified 6,455 true negatives and 5,439 true positives. It misclassified 441

healthy images as diseased (false positives) and 1,866 diseased images as healthy (false negatives).
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cm = evaluate model performance(best_model, ts_gen)

888/888 32s 3ems/step
Classification Report:

precision recall fl-score  support
a e.78 a.94 .85 6896
1 B.93 a.74 .83 7385
ACCUracy .84 142@l1
Macro avg .85 a.84 .84 142al1
weighted avg B.85 8.84 B.84 1421

Figure 11: Evaluation of the best-performing LightDR CNN model

Confusion Matrix
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- 3000
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Figure 12: Confusion matrix of the best-performing LightDR CNN model

3.5 Prediction and Model Testing

The model prediction successfully processed a retinal fundus image using the trained LightDR CNN model. After
resizing the image to 150x150 pixels and applying pixel rescaling via ImageDataGenerator, the model produced
a predicted probability of 1.000, indicating a strong confidence toward the negative class. Based on the sigmoid
output threshold of 0.5, the image was classified as “DR”, which represents a positive diabetic retinopathy case.
The image was then displayed alongside the prediction, confirming the model’s ability to interpret and classify

unseen data with high sensitivity. This step validates the model’s efficiency.
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import numpy as np

from PIL import Image

import matplotlib.pyplet as plt

from tensorflow.keras.preprocessing.image import ImageDataGenerator

# Prediction ImageDataGenerator (can apply Light augmentations if you want)
prediction_datagen = ImageDataGenerator(

rescale=1/255.8 # must rescale Like training!

# You usuglly don’t want augmentations here, but you can keep mild ones if needed

# Preprocess and predict function

def preprocess_and_predict(image_path, model, target size=(158, 158)):
# Load the image
img = Image.open(image_path).convert("RGB")
img = img.resize(target_size)

# Convert to array and add batch dimension
img_array = np.array({img)
img_array = np.expand_dims(img_array, axis=8)

# Preprocess (rescaling etc.)
img_preprocessed = next(prediction_datagen.flow(img_array, batch_size=1, shuffle=False))

# Predict
prediction = model.predict(img_preprocessed)[@][@] # sigmoid output
predicted_class = int{prediction > 8.5) # threshold at 8.5

return predicted_class, prediction, img

# Example usage
image_path = "./test/4/1a98fad9ffa2-68@-ALL.jpg" # replace with your path
predicted class, pred prob, img = preprocess_and predict(image path, best_model)

# Define your class names
class_names = ["No DR", "DR™]

# Print results
print(f"Predicted probability: {pred_prob:.4f}")
print{f"Predicted class: {class_names|[predicted class]}")

# Show the image
plt.imshow(img)

plt.axis{"off")
plt.show()

Figure 13: The prediction and classification of diabetic retinopathy by the LightDR CNN model
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1/1 @s 47ms/step
Predicted probability: 1.0000
Predicted class: DR

Figure 14: The prediction of a DR fundus image by the LightDR CNN model
4.Discussion

The LightDR CNN model demonstrated strong diagnostic capability for diabetic retinopathy (DR) detection and
classification, achieving an overall accuracy of 84% on the test dataset. This level of performance is consistent
with, and in some cases comparable to, outcomes reported in previous research employing similar deep learning
frameworks for retinal fundus image analysis. The model’s precision of 0.78 and recall of 0.94 for “No DR,”
alongside a precision of 0.93 and recall of 0.74 for “Proliferative DR,” indicate robust performance in correctly
identifying both healthy and severe DR cases. This balance between sensitivity and specificity suggests that the
LightDR model effectively distinguishes retinal features associated with DR progression.

Comparing this to previous works, Li and his colleagues reported that their proposed deep learning model achieved
a recognition rate of 86.17%, outperforming earlier approaches[12].They also developed an application known as
Deep Retina, which allowed non-specialists to capture and analyze fundus images using a handheld
ophthalmoscope, emphasizing accessibility and telemedicine applicability. Similarly, the LightDR CNN shares
this emphasis on computational efficiency and potential integration into portable screening systems, reinforcing

the broader movement toward Al-assisted community eye care.

In another related study, Rama and his colleaguesreplicated a similar accuracy level of 86.17% using a machine

learning algorithm integrated Deep Retina application[13].Their findings demonstrated that deep learning models
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could facilitate self-diagnosis, home-based screening, and remote consultations, thereby extending access to
diabetic eye disease management. The LightDR model, with its comparable accuracy, supports this trend and

shows promise for inclusion in teleophthalmology systems, particularly in low-resource healthcare environments.

Meanwhile, Albahli and Ahmad Hassan Yar emphasized the crucial role of image preprocessing in improving
model efficacy. Their study revealed that using ResNet50, accuracy varied significantly depending on the image
enhancement method, ranging from 60.2% to 82.5%, while UNet achieved up to 91.09% for detecting hard
exudates after applying preprocessing techniques such as BCC and CLAHE[6].In this present study, the use of
the Augmented_resized_V2 dataset, which included preprocessed and standardized images resized to 600x600
pixels, highly contributed to the model’s stability and improved classification accuracy. This validates the
importance of high-quality data preparation and augmentation as essential steps for maximizing CNN
performance in medical imaging tasks.The superior performance reported by Xu and his colleagues (2017), an
accuracy of 94.5% using a deep convolutional neural network, demonstrates the upper bounds of what can be
achieved with large, balanced datasets and optimized architectures[9].However, Xu and his colleagues noted that
their results benefited from extensive training data and computational resources. In contrast, the LightDR CNN
achieved an accuracy of 84% using a more compact and computationally efficient model, highlighting its potential
for real-world deployment in clinical or remote settings where high-performance computing infrastructure may
not be available.Overall, these comparisons suggest that while the LightDR CNN model performs slightly below
some of the highest benchmarks Xu and his colleagues and Li and his colleagues,[9, 12] it remains within a
competitive range and demonstrates clear potential for scalable, resource-efficient DR screening. In summary, the
findings from this study align with existing literature emphasizing the effectiveness of CNN-based models in
automating DR diagnosis. With an overall accuracy of 84%, the LightDR CNN demonstrates a strong balance
between efficiency and diagnostic precision, validating the ongoing evolution of deep learning as a transformative

tool in ophthalmic diagnostics.

5.Conclusion

The LightDR CNN model achieved a final test accuracy of 84%, demonstrating reliable performance in
distinguishing between diabetic and non-diabetic retinal images. Its high recall for healthy cases and strong
precision for diseased cases reflect a balanced diagnostic capability, while the confusion matrix confirms its
sensitivity to disease presence, a critical factor in screening applications. The model’s efficiency, scalability, and
interpretability position it as a viable candidate for integration into diabetic retinopathy screening programs.
However, clinical deployment will require additional validation across diverse populations, calibration for real-
world variability, and careful consideration of ethical and regulatory standards. Overall, LightDR represents a

meaningful advancement in Al-assisted ophthalmic diagnostics.

6.Limitations

The limitation of this study lies in its reliance on publicly available datasets, which may not fully represent the
diversity of real-world clinical populations, imaging devices, or disease prevalence. Additionally, while the

LightDR CNN model demonstrated strong performance on binary classification, its ability to accurately grade
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intermediate DR stages (e.g., mild vs. moderate) was not deeply explored. The model’s interpretability was limited
to Grad-CAM visualizations, which, while helpful, do not offer granular lesion-level explanations. Furthermore,
the absence of patient-level metadata such as age, comorbidities, or image acquisition conditions restricts the
scope of clinical validation.

7.Future Studies

Future studies should focus on expanding the dataset to include multi-center, demographically diverse fundus
images and incorporate richer clinical metadata for context-aware predictions. Exploring multi-task learning
architectures that combine DR grading with lesion segmentation could enhance diagnostic precision. Integration
with mobile or edge devices for real-time screening, coupled with prospective clinical trials, will be essential to
validate the model’s utility in real-world settings. Finally, ethical frameworks for Al deployment in

ophthalmology should be developed to address bias, accountability, and patient consent.
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