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Abstract

Road traffic flow produces an undesirable externality since it distorts the ambient environmental noise, especially
in cities. Such nuisance noise poses a risk to the health of the inhabitants. Globally, the combined concert of the
forces of urbanization and road transport motorization has intensified the noise pollution challenge; yet, locally
adapted predictive tools remain limited. In Nairobi, the capital city of Kenya, Road Traffic Noise (RTN) remains
a less understood environmental nuisance. To date, no predictive RTN models have been developed, while
established models such as CoRTN and RLS-90 lack applicability to Nairobi’s traffic and environmental
conditions. This study aimed to develop an accurate smart model leveraging artificial neural networks (ANNS) to
forecast RTN levels using traffic information data [22]. Traffic data, including audio recordings using a Samsung
Galaxy A12 Model SM-A127F/DS Android Smartphone, equivalent noise levels (Leq) using a Lutron SL-4033SD
Class 1 Sound Level Meter (SLM), vehicular volume using a manual tally form, and speed using a speed gun, was
collected across 42 locations within Nairobi. Using this data, an Artificial Neural Network (ANN), Multi-Layer
Perceptron (MLP) model, was developed with two hidden layers. Hyperparameter tuning via grid search was done
to optimize model performance. The model achieved a Mean Absolute Error (MAE) of 0.97 dBA and an R? value
of 0.90, outperforming traditional statistical models like CoORTN with an MAE of 5.0 dBA and RLS-90 with an
MAE of 11.0 dBA. These results highlight the model’s high accuracy in predicting Nairobi’s RTN. The model’s
deployment on a web-based dashboard enables real-time noise monitoring and stakeholder engagement. This
pioneering smart predictive model for Nairobi offers a scalable solution for urban noise management [25], with

potential applications in traffic planning and policy implementation.
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1. Introduction

Road traffic noise (RTN) is a pressing environmental and public health concern in urban areas, particularly in
rapidly urbanizing cities worldwide. As a byproduct of vehicular traffic, RTN contributes to adverse health
outcomes, including stress, sleep disturbances, and cardiovascular diseases [28], as documented by the World
Health Organization [1]. Studies by [2,3] highlight noise’s auditory and non-auditory effects, such as anxiety and
cognitive impairment, necessitating robust noise management. In Europe and North America, long-term
monitoring has linked RTN to reduced well-being, with studies like [4,5,6,20] showing increased mortality, mental
health issues, and cardiovascular risks.In developing regions like Asia and Africa, dense traffic and heterogeneous
vehicle compositions exacerbate RTN challenges [26]. For instance, studies in Delhi, India, have reported noise
levels consistently exceeding permissible limits across major traffic corridors [7,8]. In Africa, research in Lagos,
Nigeria, documented chronic noise exposure surpassing WHO guidelines, posing significant health risks [9].
Similarly, [10] applied spatial modeling to map environmental noise in Accra, Ghana, revealing exposure
inequalities in urban settings. Earlier work by [11] further confirmed that traffic-related noise contributes to
cardiovascular disease risk, highlighting the global relevance of RTN as a public health issue.While measurement-
based studies provide critical insights, their high costs and logistical complexity make them impractical for large-
scale urban applications, driving demand for predictive models tailored to local conditions [29]. Traditional
statistical models, such as CoRTN and RLS-90, rely on traffic volume, speed, and road conditions but often
underperform in non-European contexts due to differing traffic patterns [12]. Recent advancements in machine
learning, particularly Artificial Neural Networks (ANNSs) and ensemble methods, have demonstrated superior
performance in capturing complex, non-linear relationships in traffic noise data. For example, [13] developed an
emotional ANN model for vehicular traffic noise in Tehran, achieving high accuracy by modeling non-linear
traffic dynamics. Similarly, [14] employed an ANN with grid search hyperparameter tuning to predict RTN in
Bogota, optimizing for urban-specific variables. [15] applied ensemble methods, such as random forests, to predict
road traffic noise, emphasizing their robustness in handling diverse traffic datasets. [16] leveraged deep learning
with convolutional layers to forecast urban noise in real time, incorporating spatial-temporal features. [17] used
ANNSs to model highway noise in India, while [18] integrated ANN with contouring techniques for spatial noise
mapping. [19] combined ensemble machine learning with GIS to predict campus traffic noise, highlighting the
role of spatial variables in enhancing model accuracy. These studies collectively demonstrate that machine
learning approaches, when adapted to local conditions, outperform traditional statistical models by leveraging

advanced mathematical frameworks to model complex urban noise patterns.

In Eastern Africa, smart predictive models for RTN remain scarce, with most studies relying on outdated statistical
methods. Nairobi, Kenya’s capital, presents unique challenges due to its diverse vehicle fleet, including bicycles,
motorcycles, cars, buses, and trucks, operating within constrained road networks (Appendix 4). This
heterogeneity, coupled with frequent congestion, results in irregular traffic flow and elevated noise levels. Existing
models like CoRTN and RLS-90 are not calibrated for Nairobi’s conditions, highlighting a critical gap in localized
RTN prediction frameworks. This study addresses this gap by developing the first ANN-based RTN prediction
model tailored to Nairobi’s traffic and environmental context. Its novelty lies in using a Multi-Layer Perceptron
(MLP) ANN, optimized for Nairobi’s heterogeneous traffic patterns via grid search hyperparameter tuning, and

deploying it on a web-based dashboard for real-time monitoring for noise reduction schemes [23]. The study
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contributes: (1) a high-accuracy MLP model for RTN prediction, (2) a scalable framework for noise management
in African cities, and (3) a public platform for stakeholder engagement and urban noise policy formulation as
suggested by [24]. These advancements aim to support urban highway planning [27], mitigate health impacts, and

enhance liveability in Nairobi and similar contexts.

The source code for the MLP ANN model, including data preprocessing, model training, hyperparameter tuning,
and web-based dashboard deployment, is available on GitHub at https://github.com/ElishaAkech/SOUNDAI.
This repository includes Python scripts for implementing the model using libraries such as PyTorch, along with

real datasets and instructions for reproducing the results.

2. Methodology
2.1. Study Area

The study was conducted in Nairobi City, Kenya, a bustling metropolis with a diverse vehicle fleet.
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Figure 1: Map of Nairobi City, Kenya (Source: Author)

42 sampling points were selected across the city, spanning diverse land use types connected by diverse road

corridors that have different traffic volumes, all representing varied urban traffic conditions, see Figure 2.
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Figure 2: 42 Sampling locations selected across Nairobi (Source: Author)

2.2. Data Collection

Data were collected for sevendays, across 42 Nairobi locations from6 AM to 6 PM. Noise levels (Leq) were measured
using a Lutron SL-4033SD Class 1 calibrated Sound Level Meter (SLM). A handheld Samsung Galaxy A12 Model
SM-A127F/DS, Android smartphone was also used to capture audio recordings of RTN. Vehicle count spanning
bicycles, motorcycles, private cars, SUVs, Pick-ups, Public Service Vehicles (PSVs), buses, light, medium, and
heavy-duty trucks, and others such as tractors were manually tallied on a form shown in Appendix 1. Traffic speed
was also captured using a calibrated Binar Radar speed gun and documented manually on a form shown in

Appendix 1. From the data, a total of 504 samples of data were obtained.

2.3. Data Preprocessing

Noise levels were calculated in MS Excel from the logged SLM data. Vehicle counts were converted to Passenger
Car Units (PCU) using standard conversion factors shown in Appendix 3. Average speeds were also calculated
from the speed gun data, and the flow type was categorized as congested (<20 km/h), periodic (20-35 km/h), or
fluid (>35 km/h). The smartphone audio recordings were preprocessed using Python to extract the Leq. They were

compared with the SLM measurements to ensure consistency.

2.4. Framework Overview

The modelling process followed a structured pipeline, as shown in Figure 3, from data sources to evaluation, with

shared preprocessing and diverse modelling approaches. The framework as presented in Figure 3, includes: ()
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Data Sources: Three Excel sheets with the Noise Leq, Speed, and Vehicle Counts in PCU, per location and at
different hour bands, providing the raw data, (b) Common Preprocessing: Shared steps across all models,
including feature en- gineering (motorcycles, light/medium/heavy vehicles, speed, lanes, flow type), data
processing and cleaning, and an 80/20 train/test split, (c) Model Section: Divided into three categories: Traditional
Machine Learning Models, that is, Random Forest, XGBoost, SVR, Custom ANN that is the 3-layer network
implemented in this study, and Research-Based ANNSs, that is, models from literature (Cammarata, Bogot3,
Tehran, UAE, Genaro, and Torija), and Evaluation: Common performance metrics (Mean Absolute Error (MAE),
Root Mean Square Error (RMSE), and the coefficient of determination (R?)) for comparing all models. This
pipeline emphasizes that while preprocessing is identical, providing a standardized feature set to all models, the

modelling approaches differ, utilizing distinct architectures and algorithms to predict the Leq.
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Figure 3: Visual pipeline diagram illustrating the modelling framework (Source: Author)

272



American Academic Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) - Volume 103, No 1, pp 268-289

2.5. Smart Prediction Model

A Multi-Layer Perceptron (MLP) ANN was selected due to its superior handling of non-linear relationships, after
comparing different algorithms such as Random Forest, XGBoost, SVR, and Linear Regression, see Figure 3

above.
2.6. Steps of Modelling
2.6.1. Input Vector Definition

The input to the neural network is formalized as a vector x, each component representing a key traffic or

environmental feature contributing to RTN. X is defined as:

_ T
X = [Xq, X2, X3, X4, X5, X, X7, Xg]

The superscript T means transpose, that is, turning a row into a column for math purposes. x; denotes the count of
motor cycles, the high-frequency noise contributors; x» is the count of light vehicles, that is, cars, which are the
primary volume drivers; x3 medium vehicles that is, vans, which produce moderate noise; X4 represents heavy
vehicles, that is, trucks, which are low-frequency dominant; xs is average vehicle speed in kilometers per hour,
influencing Doppler effects and tire-road interactions; Xs represents the number of lanes, affecting noise
propagation; xz represents the passenger car units (PCU), which is a standardized measure of traffic volume, and
xg represents the flow type (categorical: 0 for congested, 1 for periodic, 2 for fluid), impacting noise variability.
These features were selected based on correlation analysis and domain knowledge to capture the stochastic nature
of urban RTN in Nairobi.

2.6.2. Forward Propagation

The network processes the input through a series of linear transformations and non-linear activations to model

complex RTN patterns. The computations are:
The first hidden layer: h; = max (0, W;x + b,) Equation 1

Where W, € R?5*8 represents the weight matrix. It is a table of numbers that adjusts how much each input affects

the layer. R?5*8 means 25 rows by 8 columns of real numbers.

X is the input vector, and b; € R is the bias vector, which adds a constant to shift the output. max (0,) is the
Rectified Linear Unit (ReLU) activation function, which introduces non-linearity (allows modeling curves, not
just straight lines) to handle heteroscedastic noise data (varying error) and prevents vanishing gradients (a training

problem where updates become too small)
The second hidden layer: h, = max (0, W,h; + b,) Equation 2

Where W, € R%2?5 b, € R represents the weight matrix and the bias vector that expand feature representations
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for deeper pattern recognition.
The output layer (the Nairobi’s Smart RTN Prediction Model): y = W;h, + bg Equation 3

Where W3 € R¥™, and bz € R, yielding the predicted equivalent noise level, y, in dBA. This architecture allows
the model to learn hierarchical features, from raw traffic counts to aggregated noise predictions, optimizing for

the non-stationary characteristics of RTN.
2.6.3. Data Splitting and Cross-Validation

The dataset of 504 samples was partitioned into a training set (80%, 404 samples) and a testing set (20%, 100
samples) using stratified sampling to maintain distribution balance across noise hotspots. This split ensures robust
generalization while allocating sufficient data for learning. To mitigate overfitting and assess model stability, 5-
fold cross-validation was employed on the training set: the data is divided into 5 subsets, with each fold used once
as validation while training on the remaining four. This process yields averaged performance metrics, providing

a scientifically rigorous estimate of out-of-sample errors in the context of variable Nairobi traffic conditions.
2.6.4. Hyperparameter Optimization and Evaluation

Hyperparameters, including learning rate (range: [0.0001, 0.01]), batch size (range: [16, 64]), and number of
epochs (up to 500 with early stopping), were tuned using grid search, exhaustively evaluating combinations to

minimize validation loss. Model performance was quantified using:
Mean Absolute Error (MAE): MAE = %Z?’:ll(yi -3 Equation 4

Where N is the number of samples, for example, 100 in the test set, y;is the observed Leq at sample i, and , is
the predicted Leq at sample i. MAE measures average deviation in dBA and is crucial for practical noise

forecasting.

1 —~ .
Root Mean Squared Error (RMSE): RMSE = /ﬁ N —3)? Equation 5

Where N is the number of samples, yi is the observed Leq at sample i, and ¥, is the predicted Leq at sample i. The

RMSE emphasizes larger errors in high-noise scenarios.

o2
The Coefficient of Determination (R?): R? = 1 — % Equation 6

Where y is the mean of the observed Leqs, yiis the observed Leq at sample i, and ¥, is the predicted Leq at sample

The coefficient of determination indicates an explained variance; a value closer to 1 is better, meaning that the

model will account for most differences in the data.
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TN

SO Ei-9)?

Where yiis the observed Leq at sample i, ¥, is the predicted Leq at sample i, ¥ is the mean of the observed Legs,

Pearson correlation coefficient: r = Equation 7
and ¥ is the mean of predicted Legs.

It assesses linear agreement between predicted and actual Leq, ensuring scientific validity.

2.6.5. Loss Function

The Mean Squared Error (MSE) was selected as the objective function for optimization, where:
MSE = %2?21(}’1‘ —5)? Equation 8
Where N is the number of samples, yiis the observed Leq at sample i, and ¥, Is the predicted Leq at sample i.

The MSE is quadratic, penalizing larger deviations more severely, which is appropriate for regression tasks like
RTN prediction, where minimizing variance in noise estimates is critical for public health applications. It aligns
with the Gaussian assumption of noise residuals in environmental modeling.

2.6.6. Optimizer

The Adam (Adaptive Moment Estimation) optimizer was utilized for efficient gradient descent, updating the
weights as:

Wip1 = We — 1] 'J—%e Equation 9

where w; is the weight at step t (current), wi is the updated weight, n is the learning rate (Step size), m, is the
bias-corrected first moment estimate (smoothed gradient, like momentum),; is the bias-corrected second
moment estimate (smoothed squared gradient for adaptive rates), and e = 1078, for numerical stability (prevents
division by zero). Adam combines momentum and RMSprop (adapts rates per parameter) advantages, adapting
per-parameter learning rates, which accelerates convergence on the non-convex loss landscape of ANN training

for RTN data with inherent multicollinearity.
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NoisePredictor Neural Network

Input Layer Hidden Layer 1 Hidden Layer 2 Output Layer

(input_dim) (25 neurons) (50 neurons) (1 neuron)

fc1: Linear(input_dim — 25) fc2: Linear(25 — 50) fc3: Linear(50 — 1)

Architecture: Input — FC(25) + ReLU — FC(50) + ReLU — FC(1)

Figure 4: MLP Architecture for RTN Prediction

2.7. Detailed Explanation of Forward Propagation and Optimization

2.7.1. Forward Propagation Components

Forward propagation is the process by which the input data flows through the network layers to produce an output

prediction. Imagine it as a factory assembly line where raw materials (inputs) are transformed step by step.

The key variables are:

e Weight Matrices (W): These are like adjustable knobs in the network. The weight matrices W; € R%*8 (25
by 8 grid of numbers), W, € R?, and W3 € R¥C contain learnable parameters that connect neurons
(processing units) between layers. For instance, W1 weights the 8 input features, for example, motorcycle
counts as X1, and speed as Xs, to the 25 neurons in the first hidden layer, scaling each feature’s contribution
to capture its influence on noise. These weights are changed during training to make better predictions. A
high weight on x; might mean motorcycles are very important for noise in Nairobi.

e Hidden Layer Outputs (h): These are intermediate results. The vectors h; € R? (list of 25 numbers) and h;
€ R% represent the activations (outputs) of the first and second hidden layers, respectively. Computed as in
Equation 1, multiply weights by inputs, add bias, then set negatives to zero. Similarly, for h, as in Equation
2, they apply the ReLU activation to introduce non-linearity, enabling the model to learn complex patterns,
like how motorcycle counts and traffic flow together affect noise.

e Bias Vectors (b): These are constants added to adjust the output. The bias terms b; € R% (25 numbers), b2
€ R, and bs € R (single number) shift the linear transformations in each layer, allowing the network to fit

data better. For example, bz adjusts the final prediction ¥ to account for baseline noise, even if all inputs are
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zero.

e Observed Leq (yi): This is the real, measured noise level (Leq, in dBA) for the i-th data sample (where i
goes from 1 to N, the total number of samples). It is collected from actual measurements taken and is the
"correct answer" the model tries to match.

e  Predicted Leq (¥1): This is the model’s guess for the noise level for the i-th sample, calculated as in Equation
3. Itis compared to y; to see how wrong the model is, and is shown on the dashboard for users.

2.7.2. Adam Optimizer Components

The optimizer is like a teacher that corrects the model’s mistakes by adjusting weights. The Adam optimizer updates
the weights and biases to make the loss (error) smaller, using Equation 8. Think of it as taking small steps downhill
to find the lowest error.

The components are:

o w;and wia: A single weight (one number in W) at the current step t (like time step in training), and its new
value after update. This happens for every weight and bias to improve the model.

e Learning Rate (1): This is how big each step is (tuned between 0.0001 and 0.01). Too big, and you might
overshoot; too small, and learning is slow. It is like the stride length when walking downhill.

e Bias-Corrected First Moment (mt): This is a smoothed version of the gradient (direction of steepest descent,

calculated as change in loss (9L) per change in weight (W):

9t =50 Equation 10

— _ mt .

me =14 Equation 11
Where:

me = fimeg + (1 — B)g: Equation 12

and B1 = 0.9 (a decay factor).

It adds momentum, like pushing a ball to keep it rolling in the same direction.

o Bias-Corrected Second Moment (7;): This smoothens the squared gradient for adaptive steps:

U = P Equation 13
with
ve = Bpvey + (1 = Br)g? Equation 14
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and 32 = 0.999.
It makes steps smaller for noisy directions (high variance) and larger for consistent ones.

e Numerical Stability Term (€): A tiny number (10~8) added to avoid dividing by zero if 7; is very small, thus keeping
calculations safe. This setup helps the model learn efficiently from Nairobi’s traffic data, handling complexities

like varying vehicle noise.
2.8. Statistical Descriptors for Input Data

Table in Appendix 4 presents statistical descriptors for the input data with a significance value a = 5% for the
Kolmogorov-Smirnov (K-S) test. Statistical descriptors summarize data. x is the mean (average value), o is the
standard deviation (how it is spread out), Min and Max are the smallest and largest, Range is the Maximum minus
the Minimum, IQR is the interquartile range (middle 50% spread), C.V. is the coefficient of variation (relative spread
in %), Kurtosis measures tail heaviness (high means more extremes), Asy. Coe. is asymmetry (skewness, positive
means tail to the right), Kol. Smi. is the K-S test p-value (low means not normal distribution), Proportion is % of

vehicle types.
2.8.1. Evaluation

Performance was evaluated using MAE, RMSE, and R?, with Pearson correlation analysis between predicted and
actual Leq, obtained from SLM data. The performance metrics were compared to those of traditional machine

learning models and literature-based models.
2.8.2. Model Deployment

The model is deployed on a web-based dashboard, accessible to the public. Users input parameters suchasthe location,
time, speed, and vehicle count, and the dashboard outputs predicted Leq in real-time, visualized via interactive charts.

The platform supports noise monitoring, public education, and integration with traffic management systems.
3.Results

The table in Appendix 5 shows the equivalent sound levels measured at different time intervals using the SLM

for the 42 sampling locations
3.1. Nairobi Road Traffic Noise Prediction Model
The Nairobi’s Smart RTN Prediction Model (MLP) Leqpregictea = W3hz + b3 Equation 15

Where h; is defined as in Equation 2 and W5 € R™, and bs € R represents the weight matrix and bias for the

output layer (single prediction).
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3.2. Model evaluation and validation

The MLP model achieved an MAE of 0.97 dBA, RMSE of 1.38 dBA, and R? of 0.90 with a Pearson Correlation
coefficient of 0.9476 between the predicted and the measured Leq values, indicating strong predictive accuracy.
Table 2 compares the MLP with other models, showing superior performance over CoORTN, which has an MAE
of 5.0 dBA and an R2 of 0.80, and RLS-90, which has an MAE of 11.0 dBA and an R2 of 0.50, attributed to its
ability to capture Nairobi’s unique traffic patterns. The UAE ANN (Mansourkhaki, Berangi, Haghiri, and
Constantinescu, 2018) and Torija ANN (Torija and his colleagues, 2012) performed similarly well; however, the
Current MLP is optimized for Nairobi’s context.

Table 1: Model evaluation and validation with existing predictive models

Current MLP 0.97 1.38 0.90
Bogotd MLP [14] [14] 1.19 1.56 0.87
IANN (Torija) [8] [8] 0.87 1.08 0.94
IANN (UAE) [11] [11] 0.79 0.97 0.95
XGBoost 1.14 1.39 0.89
SVR 2.67 3.59 0.30
Random Forest 1.09 1.43 0.89
Linear Regression 3.74 4.44 -0.07
CoRTN 5.00 - 0.80
RLS-90 11.00 - 0.50
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Figure 5: Average Difference Between Measured and Predicted Leq
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SPL Varigtion Prediction for Location 1 (MAE: 0.97, R*: 0.90)
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Figure 6: Anexample of a day SPL variation prediction for Location 1

The plot inFigure 6 above shows the actual and predicted change in Leq over time, illustrating the differences between
measured and model-predicted noise levels per hourly interval from 6 AM to 6 PM. The close alignment, especially
during peak hours, demonstrates the model’s capability to capture temporal variations in RTN, with minor

deviations reflecting real-world complexities like unmodeled variables.

4.Discussion

From the results of this study, it can be deduced that, the MLP model developed effectively captures Nairobi’
city’s complex traffic dynamics, including the high prevalence of motorcycles and variable flow types, which
contribute significantly to road traffic noise (RTN) variability. As shown in Table 1, the model outperforms
traditional models like CORTN and RLS-90, primarily due to its ability to adapt to Nairobi’s heterogeneous vehicle
fleet and congested road networks, which these conventional models fail to address. This adaptability stems from
the model’s use of a Multi-Layer Perceptron (MLP) ANN, optimized through grid search hyperparameter tuning
to handle non-linear relationships in traffic data. The model’s predictive accuracy supports cost-effective noise
monitoring, offering a scalable solution for urban planning in rapidly growing African cities like Nairobi. By
deploying the model on a web-based dashboard, it enables real-time noise prediction, facilitates stakeholder
engagement, and supports public education on noise pollution. The platform’s integration with traffic management
systems can inform urban noise policies and mitigate health impacts, such as stress and subjective annoyance.
However, the model’s reliance on data from this study limits its ability to account for seasonal traffic variations
or unmodeled variables like road surface type and weather conditions, which future research should address to

enhance robustness.
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Predictive modeling offers significant advantages, including cost-effective noise monitoring and scalability, which
are particularly beneficial for urban planning in rapidly growing cities like Nairobi. The deployment of the model
on a web-based dashboard facilitates real-time noise prediction [21], enables stakeholder engagement, allows for
public education on noise pollution, and integrates with traffic management systems to mitigate noise at major
hotspots. Practical implications include informing urban noise policies and reducing health impacts like stress and
subjective annoyance. However, its limitations lie in the model’s reliance on this study’s data, which may not

account for seasonal traffic variations, and the absence of variables like road surface type or weather conditions.

5.Conclusion

This study developed the first smart RTN prediction model for Nairobi, leveraging an MLP ANN with high
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accuracy and surpassing traditional models like CoRTN and RLS-90. The model, tailored to Nairobi’s traffic

dynamics, is deployed on a public web dashboard, enabling real-time noise monitoring and prediction and citizen

engagement. The study recommends including real-time data integration, expanding input variables such as road

surface and weather, and collaboration with traffic authorities to enhance urban noise management. This pioneering

model sets a baseline for smart noise prediction in African cities, with the potential for broader application.
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6.Appendix 1

Manual Tally form used for traffic count

UNIVERSITY OF NAIROBI
FACULTY OF ENGINEERING
DEPARTMENT OF CIVIL & CONSTRUCTION ENGINEERING
TRAFFIC COUNT TALLY FORM

LOCATION COORDINATES: DATE:

This form records vehicle count at a monitoring point in 15-minute intervals from 6:00 AM to 6:00 PM. Vehicles are categorized into 11 types to analyze traffic flow and peak periods. This is
research by the University of Nairobi.

VEHICLE BICYCLE | MOTOR- PRIVATE CARSPICK-UPS SUVs PSVse.g. BUSES LIGHT MEDIUM HEAVY TRUCKSOTHERS TOTAL
CATEGORIES CYCLE e.g, Saloon Matatus TRUCKS (2 | TRUCKS (3 /TRM@S
|5 R ol GRS ey = i =5 &%
INTERVAL - —
—h K.

6AM -7 AM
7AM -8 AM
8AM -9 AM
9AM - 10 AM
10AM - 11 AM
11AM-12 PM

Figure 9
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UNIVERSITY OF NAIROBI
FACULTY OF ENGINEERING
DEPARTMENT OF CIVIL & CONSTRUCTION ENGINEERING
TRAFFICCOUNT TALLYFORM

VEHICLE
CATEGORIES
TIME
INTERVAL

BICYCLE

&

MOTOR-
CYCLE

E20)

PRIVATE CARSPICK-UPS

e.g, Saloon

SUVs

=2

PSVs e.g.
Matatus

reh
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i:.'ﬁ -

LIGHT
TRUCKS (2
Axle)
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TRUCKS (3
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L

HEAVY TRUCKS!
/TRAILERS

o

OTHERS TOTAL

12ZPM-1PM

1PM-2PM

2PM-3PM

3PM-4PM

4PM-5PM

5PM-6PM

Appendix 2

Manual Tally form used for recording speed

LOCATION COORDINATES:

Figure 10

UNIVERSITY OF NAIROBI
FACULTY OF ENGINEERING
DEPARTMENT OF CIVIL & CONSTRUCTIONENGINEERING
VEHICLE SPEED FORM

DATE:

This form records vehicle count at a monitoring point in 15-minute intervals from 6:00 AM to 6:00 PM. Vehicles are categorized into 11 types to analyze traffic flow and peak periods. This is
research by the University of Nairobi.

VEHICLE
CATEGORIES

TIME

INTERVAL

BICYCLE

A%

MOTOR-
CYCLE

PRIVATE CARSPICK-UPS

L-.i. Saloon .

SUVs

PSVse.g.
Matatus

BUSES

LIGHT
TRUCKS (2

MEDIUM
TRUCKS (3

it

/TRAILERS

HEAVY TRUCKSOTHERS

o

TOTAL

6AM -7 AM

7 AM - 8 AM

8AM -9 AM

9AM - 10 AM

10 AM - 11 AM

11 AM - 12 PM|

Figure 11
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UNIVERSITY OF NAIROBI
FACULTY OF ENGINEERING
DEPARTMENT OF CIVIL & CONSTRUCTIONENGINEERING

VEHICLESPEED FORM

VEHICLE BICYCLE | MOTOR- PRIVATE CARSPICK-UPS SUVs PSVs e.g. | BUSES LIGHT MEDIUM HEAVY TRUCKSOTHERS TOTAL

CATEGORIES CYCLE e.g., Saloon Matatus TRUCKS (2 | TRUCKS (3 | /TRAILERS
TTIME | _ d : h ~ = Axle) Axle) -

iNTERVAL | (R0 = a=a = ;

] =

12 PM-1PM |

1PM-2PM

2PM-3PM

3PM-4PM

4PM-5PM

5PM-6PM

Figure 12

Appendix 3

Table2: PCU conversion factors

Bicycle Motorcycle | Private | Pickup | SUV | PSVs | Buses Light Medium | Heavy | Others

car trucks | trucks trucks

0.5 1 1 1 1 1.5 4 1.5 5 8 8
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Appendix 4

Table 3: showing the Statistical descriptors for input data (significance value o= 5% for K-S)

X 11.65 58.24 12.83 5.71 1838.07 50.19 3.07
0.87

o 15.23 38.76 7.45 6.12 580.34 14.82 0.98
0.34

Min. 0.00 5.00 0.00 0.00 409.00 25.00 2.00
0.00

Max. 63.00 210.00 42.00 21.00 6965.00 85.21 4.00
1.00

Range 63.00 205.00 42.00 21.00 6556.00 60.21 2.00
1.00

IQR 20.00 50.00 15.00 8.00 1200.00 20.00 2.00
1.00

C.V. (%) 130.69 66.55 58.06 107.18 31.57 29.53 31.92
39.08

Kurtosis 5.12 4.89 3.45 4.23 3.12 2.89 1.45
1.23

Asy. Coe. 2.34 2.10 1.87 2.01 1.65 1.23 0.67
0.45

Kol. Smi. p < 0.001 p < 0.01 p < 0.05 p < 0.01 p < 0.001 p < 0.05 p<01
p < 0.05

Proportion 24.37% 49.84% 14.84% 9.94% 100.00% 100.00% 100.00%
100.00%
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Appendix 5
Table 4: showing the measured/observed RTN levels in Nairobi, Kenya

6 7 8 10 12 3 5
LocaTion | aM-7 | ams | amo | ° M0 L aman [ AM g | EPME 2 PMS g PPV e

AM AM AM AM AM 12 P PM M PV PM PV PM
1 7352 | 7212 | 7132 | 71.92 73.02 74.32 7492 | 74.22 72.02 7132 | 71.12 71.02
2 82.89 | 81.39 | 80.69 | 81.29 82.39 83.69 84.29 | 83.29 81.39 80.59 | 80.39 80.29
3 75.99 | 7439 | 73.79 | 74.39 75.49 76.79 77.39 | 76.29 75.09 74.39 | 73.59 73.39
4 72.2 70.8 71 71.6 2.7 74 74.6 73.5 71.7 71 70.7 70.6
5 75.35 | 7445 | 74.85 | 75.45 75.95 77.85 78.45 | 77.35 75.55 74.85 | 74.65 74.55
6 8292 | 81.22 | 81.72 | 82.32 83.42 84.72 85.32 | 84.22 82.42 81.72 | 81.52 81.42
7 79.46 | 76.96 | 78.26 | 78.86 79.96 81.26 81.86 | 80.76 78.96 78.26 | 78.06 77.96
8 78.9 76.4 7T 78.3 79.4 80.7 81.3 80.2 78.4 77.6 77.5 77.2
9 7422 | 72.62 | 73.02 | 73.62 74.72 76.02 76.62 | 75.52 73.72 7292 | 72.82 72.72
10 78.69 | 76.69 | 76.49 | 77.09 78.19 79.49 80.09 | 78.99 77.19 76.39 | 76.29 76.19
11 77.71 | 7591 | 7551 | 76.11 77.21 78.51 79.11 | 78.01 76.21 7541 | 75.31 75.21
12 80.69 | 78.59 | 78.49 | 79.09 80.19 81.49 82.09 | 80.99 79.19 78.49 | 78.29 78.19
13 81.07 | 78.97 | 78.87 | 79.47 80.57 81.87 82.47 | 81.37 79.57 78.87 | 78.67 78.57
14 76.1 74 73.9 74.5 75.6 76.9 77.5 76.4 74.6 73.9 73.7 73.6
15 75.25 | 73.15 | 73.05 | 73.65 74.75 76.05 76.65 | 75.55 73.75 73.05 | 72.85 72.55
16 75.74 | 73.64 | 7354 | 74.14 75.24 76.54 77.14 | 76.04 74.24 73.44 | 73.34 73.24
17 70.89 | 69.89 | 68.19 | 67.79 70.19 76.39 77.79 | 76.69 72.89 71.09 | 70.69 70.39
18 75.19 | 74.09 | 73.99 | 74.19 74.89 76.39 77.19 | 76.59 74.79 74.09 | 73.79 73.49
19 7258 | 71.08 | 70.38 | 70.98 73.38 74.98 76.08 | 74.78 72.18 71.38 | 70.88 70.68
20 68.86 | 66.76 | 66.36 | 67.46 69.66 72.76 74.26 | 73.16 70.36 68.66 | 67.96 67.16
21 68.71 | 67.71 | 66.51 | 67.11 69.61 73.91 75.81 | 74.71 70.91 69.21 | 68.11 67.71
22 73.03 | 71.73 | 71.43 | 71.83 74.03 75.23 75.93 | 74.83 73.03 72.33 | 71.73 71.53
23 80.86 | 78.96 | 78.66 | 79.26 81.66 84.56 85.46 | 84.36 82.56 80.86 | 80.26 80.06
24 73 70.9 70.8 71.4 73.9 76.5 7.7 76.6 74.8 73 72.5 72.3
25 7444 | 72.34 | 7224 | 72.84 75.34 77.74 79.14 | 78.11 76.24 74.84 | 7454 74.34
26 70.37 | 68.27 | 68.17 | 68.77 71.27 73.57 75.07 | 73.97 72.17 70.97 | 70.17 69.97
27 2.7 71.1 70.5 71.1 73.6 76.1 77.4 76.3 74.5 73.9 71.9 71.7
28 71.36 | 69.86 | 69.16 | 69.76 72.16 74.46 75.96 | 74.86 73.06 72.06 | 70.66 70.36
29 76.94 | 74.84 | 74.74 | 75.34 77.74 79.64 81.54 | 80.44 78.94 77.64 | 76.54 76.24
30 74.48 | 72.38 | 72.28 | 72.88 75.28 77.18 79.08 | 77.98 75.76 75.18 | 74.58 74.38
31 75.48 | 73.38 | 73.28 | 73.88 76.28 78.18 80.08 | 78.98 76.3 75.68 | 75.18 74.88
32 69.78 | 67.68 | 67.58 | 68.18 70.58 72.48 74.38 | 73.28 71.48 70.48 | 69.68 69.38
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33 80.7 78.6 78.5 79.1 81.5 83.9 85.3 84.2 82.4 81.37 | 80.5 80.3
34 74 73.2 72,5 73.1 74.5 77.4 78.3 77.2 75.4 73.55 | 73.2 73
35 83.33 | 81.93 | 81.13 | 82.23 84.13 86.03 87.93 | 86.83 84.03 82.33 | 82.03 81.83
36 76.54 | 7444 | 7434 | 74.94 77.44 79.24 81.24 | 80.14 77.34 75.64 | 75.44 75.24
37 77.18 | 75.08 | 74.98 | 75.58 78.08 79.88 81.88 | 80.78 77.08 76.58 | 75.88 75.68
38 81.64 | 79.54 | 79.44 | 80.04 82.54 85.04 86.34 | 85.24 83.44 82.34 | 81.54 81.24
39 83.3 82 81.1 81.7 84.2 86 88 86.9 85.1 84 83.6 83.3
40 77.61 | 76.21 | 75.41 | 76.01 78.41 80.31 82.21 | 81.11 79.31 7761 | 77.11 76.99
41 7841 | 76.31 | 76.21 | 76.81 79.21 81.61 83.01 | 81.91 79.11 7791 | 77.31 77.01
42 77.07 | 7497 | 74.87 | 75.47 77.87 79.77 81.67 | 80.57 78.77 76.07 | 75.67 77.77
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