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Abstract 

Road traffic flow produces an undesirable externality since it distorts the ambient environmental noise, especially 

in cities. Such nuisance noise poses a risk to the health of the inhabitants. Globally, the combined concert of the 

forces of urbanization and road transport motorization has intensified the noise pollution challenge; yet, locally 

adapted predictive tools remain limited. In Nairobi, the capital city of Kenya, Road Traffic Noise (RTN) remains 

a less understood environmental nuisance. To date, no predictive RTN models have been developed, while 

established models such as CoRTN and RLS-90 lack applicability to Nairobi’s traffic and environmental 

conditions. This study aimed to develop an accurate smart model leveraging artificial neural networks (ANNs) to 

forecast RTN levels using traffic information data [22]. Traffic data, including audio recordings using a Samsung 

Galaxy A12 Model SM-A127F/DS Android Smartphone, equivalent noise levels (Leq) using a Lutron SL-4033SD 

Class 1 Sound Level Meter (SLM), vehicular volume using a manual tally form, and speed using a speed gun, was 

collected across 42 locations within Nairobi. Using this data, an Artificial Neural Network (ANN), Multi-Layer 

Perceptron (MLP) model, was developed with two hidden layers. Hyperparameter tuning via grid search was done 

to optimize model performance. The model achieved a Mean Absolute Error (MAE) of 0.97 dBA and an R2 value 

of 0.90, outperforming traditional statistical models like CoRTN with an MAE of 5.0 dBA and RLS-90 with an 

MAE of 11.0 dBA. These results highlight the model’s high accuracy in predicting Nairobi’s RTN. The model’s 

deployment on a web-based dashboard enables real-time noise monitoring and stakeholder engagement. This 

pioneering smart predictive model for Nairobi offers a scalable solution for urban noise management [25], with 

potential applications in traffic planning and policy implementation. 
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1. Introduction 

Road traffic noise (RTN) is a pressing environmental and public health concern in urban areas, particularly in 

rapidly urbanizing cities worldwide. As a byproduct of vehicular traffic, RTN contributes to adverse health 

outcomes, including stress, sleep disturbances, and cardiovascular diseases [28], as documented by the World 

Health Organization [1]. Studies by [2,3] highlight noise’s auditory and non-auditory effects, such as anxiety and 

cognitive impairment, necessitating robust noise management. In Europe and North America, long-term 

monitoring has linked RTN to reduced well-being, with studies like [4,5,6,20] showing increased mortality, mental 

health issues, and cardiovascular risks.In developing regions like Asia and Africa, dense traffic and heterogeneous 

vehicle compositions exacerbate RTN challenges [26]. For instance, studies in Delhi, India, have reported noise 

levels consistently exceeding permissible limits across major traffic corridors [7,8]. In Africa, research in Lagos, 

Nigeria, documented chronic noise exposure surpassing WHO guidelines, posing significant health risks [9]. 

Similarly, [10] applied spatial modeling to map environmental noise in Accra, Ghana, revealing exposure 

inequalities in urban settings. Earlier work by [11] further confirmed that traffic-related noise contributes to 

cardiovascular disease risk, highlighting the global relevance of RTN as a public health issue.While measurement-

based studies provide critical insights, their high costs and logistical complexity make them impractical for large-

scale urban applications, driving demand for predictive models tailored to local conditions [29]. Traditional 

statistical models, such as CoRTN and RLS-90, rely on traffic volume, speed, and road conditions but often 

underperform in non-European contexts due to differing traffic patterns [12]. Recent advancements in machine 

learning, particularly Artificial Neural Networks (ANNs) and ensemble methods, have demonstrated superior 

performance in capturing complex, non-linear relationships in traffic noise data. For example, [13] developed an 

emotional ANN model for vehicular traffic noise in Tehran, achieving high accuracy by modeling non-linear 

traffic dynamics. Similarly, [14] employed an ANN with grid search hyperparameter tuning to predict RTN in 

Bogotá, optimizing for urban-specific variables. [15] applied ensemble methods, such as random forests, to predict 

road traffic noise, emphasizing their robustness in handling diverse traffic datasets. [16] leveraged deep learning 

with convolutional layers to forecast urban noise in real time, incorporating spatial-temporal features. [17] used 

ANNs to model highway noise in India, while [18] integrated ANN with contouring techniques for spatial noise 

mapping. [19] combined ensemble machine learning with GIS to predict campus traffic noise, highlighting the 

role of spatial variables in enhancing model accuracy. These studies collectively demonstrate that machine 

learning approaches, when adapted to local conditions, outperform traditional statistical models by leveraging 

advanced mathematical frameworks to model complex urban noise patterns. 

In Eastern Africa, smart predictive models for RTN remain scarce, with most studies relying on outdated statistical 

methods. Nairobi, Kenya’s capital, presents unique challenges due to its diverse vehicle fleet, including bicycles, 

motorcycles, cars, buses, and trucks, operating within constrained road networks (Appendix 4). This 

heterogeneity, coupled with frequent congestion, results in irregular traffic flow and elevated noise levels. Existing 

models like CoRTN and RLS-90 are not calibrated for Nairobi’s conditions, highlighting a critical gap in localized 

RTN prediction frameworks. This study addresses this gap by developing the first ANN-based RTN prediction 

model tailored to Nairobi’s traffic and environmental context. Its novelty lies in using a Multi-Layer Perceptron 

(MLP) ANN, optimized for Nairobi’s heterogeneous traffic patterns via grid search hyperparameter tuning, and 

deploying it on a web-based dashboard for real-time monitoring for noise reduction schemes [23]. The study 
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contributes: (1) a high-accuracy MLP model for RTN prediction, (2) a scalable framework for noise management 

in African cities, and (3) a public platform for stakeholder engagement and urban noise policy formulation as 

suggested by [24]. These advancements aim to support urban highway planning [27], mitigate health impacts, and 

enhance liveability in Nairobi and similar contexts. 

The source code for the MLP ANN model, including data preprocessing, model training, hyperparameter tuning, 

and web-based dashboard deployment, is available on GitHub at https://github.com/ElishaAkech/SOUNDAI. 

This repository includes Python scripts for implementing the model using libraries such as PyTorch, along with 

real datasets and instructions for reproducing the results. 

2. Methodology 

2.1 . Study Area 

The study was conducted in Nairobi City, Kenya, a bustling metropolis with a diverse vehicle fleet.  

 

Figure 1: Map of Nairobi City, Kenya (Source: Author) 

42 sampling points were selected across the city, spanning diverse land use types connected by diverse road 

corridors that have different traffic volumes, all representing varied urban traffic conditions, see Figure 2. 
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Figure 2: 42 Sampling locations selected across Nairobi (Source: Author) 

2.2 . Data Collection 

Data were collected for seven days, across 42 Nairobi locations from 6 AM to 6 PM. Noise levels (Leq) were measured 

using a Lutron SL-4033SD Class 1 calibrated Sound Level Meter (SLM). A handheld Samsung Galaxy A12 Model 

SM-A127F/DS, Android smartphone was also used to capture audio recordings of RTN. Vehicle count spanning 

bicycles, motorcycles, private cars, SUVs, Pick-ups, Public Service Vehicles (PSVs), buses, light, medium, and 

heavy-duty trucks, and others such as tractors were manually tallied on a form shown in Appendix 1. Traffic speed 

was also captured using a calibrated Binar Radar speed gun and documented manually on a form shown in 

Appendix 1. From the data, a total of 504 samples of data were obtained. 

2.3 . Data Preprocessing 

Noise levels were calculated in MS Excel from the logged SLM data. Vehicle counts were converted to Passenger 

Car Units (PCU) using standard conversion factors shown in Appendix 3. Average speeds were also calculated 

from the speed gun data, and the flow type was categorized as congested (<20 km/h), periodic (20–35 km/h), or 

fluid (>35 km/h). The smartphone audio recordings were preprocessed using Python to extract the Leq. They were 

compared with the SLM measurements to ensure consistency. 

2.4 . Framework Overview 

The modelling process followed a structured pipeline, as shown in Figure 3, from data sources to evaluation, with 

shared preprocessing and diverse modelling approaches. The framework as presented in Figure 3, includes: (a) 
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Data Sources: Three Excel sheets with the Noise Leq, Speed, and Vehicle Counts in PCU, per location and at 

different hour bands, providing the raw data, (b) Common Preprocessing: Shared steps across all models, 

including feature en- gineering (motorcycles, light/medium/heavy vehicles, speed, lanes, flow type), data 

processing and cleaning, and an 80/20 train/test split, (c) Model Section: Divided into three categories: Traditional 

Machine Learning Models, that is, Random Forest, XGBoost, SVR, Custom ANN that is the 3-layer network 

implemented in this study, and Research-Based ANNs, that is, models from literature (Cammarata, Bogotá, 

Tehran, UAE, Genaro, and Torija), and Evaluation: Common performance metrics (Mean Absolute Error (MAE), 

Root Mean Square Error (RMSE), and the coefficient of determination (R2)) for comparing all models. This 

pipeline emphasizes that while preprocessing is identical, providing a standardized feature set to all models, the 

modelling approaches differ, utilizing distinct architectures and algorithms to predict the Leq. 

 

Figure 3: Visual pipeline diagram illustrating the modelling framework (Source: Author) 
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2.5. Smart Prediction Model 

A Multi-Layer Perceptron (MLP) ANN was selected due to its superior handling of non-linear relationships, after 

comparing different algorithms such as Random Forest, XGBoost, SVR, and Linear Regression, see Figure 3 

above.  

2.6. Steps of Modelling  

2.6.1. Input Vector Definition 

 The input to the neural network is formalized as a vector x, each component representing a key traffic or 

environmental feature contributing to RTN. x is defined as: 

x = [x1, x2, x3, x4, x5, x6, x7, x8]𝑇 

The superscript T means transpose, that is, turning a row into a column for math purposes. x1 denotes the count of 

motor cycles, the high-frequency noise contributors; x2 is the count of light vehicles, that is, cars, which are the 

primary volume drivers; x3 medium vehicles that is, vans, which produce moderate noise; x4 represents heavy 

vehicles, that is, trucks, which are low-frequency dominant; x5 is average vehicle speed in kilometers per hour, 

influencing Doppler effects and tire-road interactions; x6 represents the number of lanes, affecting noise 

propagation; x7 represents the passenger car units (PCU), which is a standardized measure of traffic volume, and 

x8 represents the flow type (categorical: 0 for congested, 1 for periodic, 2 for fluid), impacting noise variability. 

These features were selected based on correlation analysis and domain knowledge to capture the stochastic nature 

of urban RTN in Nairobi. 

2.6.2. Forward Propagation 

 The network processes the input through a series of linear transformations and non-linear activations to model 

complex RTN patterns. The computations are:  

The first hidden layer: h1 = max (0, W1x + b1)    Equation 1 

Where W1 ∈ R25×8 represents the weight matrix. It is a table of numbers that adjusts how much each input affects 

the layer. R25×8 means 25 rows by 8 columns of real numbers. 

x is the input vector, and b1 ∈ R25 is the bias vector, which adds a constant to shift the output. max (0,) is the 

Rectified Linear Unit (ReLU) activation function, which introduces non-linearity (allows modeling curves, not 

just straight lines) to handle heteroscedastic noise data (varying error) and prevents vanishing gradients (a training 

problem where updates become too small) 

The second hidden layer: h2 = max (0, W2h1  + b2)   Equation 2 

Where W2 ∈ R50×25, b2 ∈ R50 represents the weight matrix and the bias vector that expand feature representations 
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for deeper pattern recognition. 

The output layer (the Nairobi’s Smart RTN Prediction Model): y =  W3h2  +  b3 Equation 3 

Where W3 ∈ R1×50, and b3 ∈ R, yielding the predicted equivalent noise level, y, in dBA. This architecture allows 

the model to learn hierarchical features, from raw traffic counts to aggregated noise predictions, optimizing for 

the non-stationary characteristics of RTN. 

2.6.3. Data Splitting and Cross-Validation 

The dataset of 504 samples was partitioned into a training set (80%, 404 samples) and a testing set (20%, 100 

samples) using stratified sampling to maintain distribution balance across noise hotspots. This split ensures robust 

generalization while allocating sufficient data for learning. To mitigate overfitting and assess model stability, 5-

fold cross-validation was employed on the training set: the data is divided into 5 subsets, with each fold used once 

as validation while training on the remaining four. This process yields averaged performance metrics, providing 

a scientifically rigorous estimate of out-of-sample errors in the context of variable Nairobi traffic conditions. 

2.6.4. Hyperparameter Optimization and Evaluation 

 Hyperparameters, including learning rate (range: [0.0001, 0.01]), batch size (range: [16, 64]), and number of 

epochs (up to 500 with early stopping), were tuned using grid search, exhaustively evaluating combinations to 

minimize validation loss. Model performance was quantified using: 

Mean Absolute Error (MAE): 𝑀𝐴𝐸 =
1

𝑁
∑ |(𝑦𝑖 − 𝑦𝑖̂|

𝑁
𝑖=1    Equation 4 

Where N is the number of samples, for example, 100 in the test set, yi is the observed Leq at sample i, and 𝑦𝑖̂ is 

the predicted Leq at sample i. MAE measures average deviation in dBA and is crucial for practical noise 

forecasting. 

Root Mean Squared Error (RMSE): RMSE = √
1

𝑁
∑ (𝑦𝑖 − 𝑦𝑖̂)

2𝑁
𝑖=1  Equation 5 

Where N is the number of samples, yi is the observed Leq at sample i, and 𝑦𝑖̂ is the predicted Leq at sample i. The 

RMSE emphasizes larger errors in high-noise scenarios. 

The Coefficient of Determination (R2): 𝑅2 = 1 −
∑(𝑦𝑖−𝑦𝑖̂)2

∑(𝑦𝑖−𝑦̅)2   Equation 6 

Where 𝑦̅ is the mean of the observed Leqs, yi is the observed Leq at sample i, and 𝑦𝑖̂ is the predicted Leq at sample 

i. 

The coefficient of determination indicates an explained variance; a value closer to 1 is better, meaning that the 

model will account for most differences in the data.  
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Pearson correlation coefficient: 𝑟 =
∑(𝑦𝑖−𝑦̅)(𝑦𝑖−𝑦̅̂)

√∑(𝑦𝑖−𝑦̅)2 ∑(𝑦𝑖−𝑦̅̂)2
   Equation 7 

Where yi is the observed Leq at sample i, 𝑦𝑖̂ is the predicted Leq at sample i, 𝑦̅ is the mean of the observed Leqs, 

and 𝑦̅̂ is the mean of predicted Leqs. 

It assesses linear agreement between predicted and actual Leq, ensuring scientific validity. 

2.6.5. Loss Function 

The Mean Squared Error (MSE) was selected as the objective function for optimization, where: 

𝑀𝑆𝐸 =
1

𝑁
∑ (𝑦𝑖 − 𝑦𝑖̂)

2𝑁
𝑖=1        Equation 8 

Where N is the number of samples, yi is the observed Leq at sample i, and 𝑦𝑖̂ Is the predicted Leq at sample i.  

The MSE is quadratic, penalizing larger deviations more severely, which is appropriate for regression tasks like 

RTN prediction, where minimizing variance in noise estimates is critical for public health applications. It aligns 

with the Gaussian assumption of noise residuals in environmental modeling. 

2.6.6. Optimizer 

The Adam (Adaptive Moment Estimation) optimizer was utilized for efficient gradient descent, updating the 

weights as: 

𝑤𝑡+1 = 𝑤𝑡 − 𝜂 ∙
𝑚𝑡̂

√𝑣𝑡̂+𝜖
        Equation 9 

where wt is the weight at step t (current), wt+1 is the updated weight, η is the learning rate (step size), 𝑚̂𝑡 is the 

bias-corrected first moment estimate (smoothed gradient, like momentum),𝑣𝑡̂   is the bias-corrected second 

moment estimate (smoothed squared gradient for adaptive rates), and 𝜖 =  10−8, for numerical stability (prevents 

division by zero). Adam combines momentum and RMSprop (adapts rates per parameter) advantages, adapting 

per-parameter learning rates, which accelerates convergence on the non-convex loss landscape of ANN training 

for RTN data with inherent multicollinearity. 
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Figure 4: MLP Architecture for RTN Prediction 

2.7. Detailed Explanation of Forward Propagation and Optimization  

2.7.1. Forward Propagation Components 

Forward propagation is the process by which the input data flows through the network layers to produce an output 

prediction. Imagine it as a factory assembly line where raw materials (inputs) are transformed step by step. 

The key variables are: 

 Weight Matrices (W): These are like adjustable knobs in the network. The weight matrices W1 ∈ R25×8 (25 

by 8 grid of numbers), W2 ∈ R50×25, and W3 ∈ R1×50 contain learnable parameters that connect neurons 

(processing units) between layers. For instance, W1 weights the 8 input features, for example, motorcycle 

counts as x1, and speed as x5, to the 25 neurons in the first hidden layer, scaling each feature’s contribution 

to capture its influence on noise. These weights are changed during training to make better predictions. A 

high weight on x1 might mean motorcycles are very important for noise in Nairobi. 

 Hidden Layer Outputs (h): These are intermediate results. The vectors h1 ∈ R25 (list of 25 numbers) and h2 

∈ R50 represent the activations (outputs) of the first and second hidden layers, respectively. Computed as in 

Equation 1, multiply weights by inputs, add bias, then set negatives to zero. Similarly, for h2 as in Equation 

2, they apply the ReLU activation to introduce non-linearity, enabling the model to learn complex patterns, 

like how motorcycle counts and traffic flow together affect noise. 

 Bias Vectors (b): These are constants added to adjust the output. The bias terms b1 ∈ R25 (25 numbers), b2 

∈ R50, and b3 ∈ R (single number) shift the linear transformations in each layer, allowing the network to fit 

data better. For example, b3 adjusts the final prediction 𝑦̂ to account for baseline noise, even if all inputs are 
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zero.  

 Observed Leq (yi): This is the real, measured noise level (Leq, in dBA) for the i-th data sample (where i 

goes from 1 to N, the total number of samples). It is collected from actual measurements taken and is the 

"correct answer" the model tries to match. 

 Predicted Leq (𝑦𝑖̂): This is the model’s guess for the noise level for the i-th sample, calculated as in Equation 

3. It is compared to yi to see how wrong the model is, and is shown on the dashboard for users.  

2.7.2. Adam Optimizer Components  

The optimizer is like a teacher that corrects the model’s mistakes by adjusting weights. The Adam optimizer updates 

the weights and biases to make the loss (error) smaller, using Equation 8. Think of it as taking small steps downhill 

to find the lowest error.  

The components are: 

 wt and wt+1: A single weight (one number in W) at the current step t (like time step in training), and its new 

value after update. This happens for every weight and bias to improve the model. 

 Learning Rate (η): This is how big each step is (tuned between 0.0001 and 0.01). Too big, and you might 

overshoot; too small, and learning is slow. It is like the stride length when walking downhill. 

 Bias-Corrected First Moment (𝑚𝑡̂): This is a smoothed version of the gradient (direction of steepest descent, 

calculated as change in loss (𝜕𝐿) per change in weight (𝜕𝑊): 

𝑔𝑡  =
𝜕𝐿

𝜕𝑊
        Equation 10 

 𝑚𝑡̂  =
𝑚𝑡

1−𝛽𝑡 
         Equation 11 

Where:  

𝑚𝑡  =  𝛽1𝑚𝑡−1 + (1 −  𝛽1)𝑔𝑡      Equation 12 

and β1 = 0.9 (a decay factor). 

It adds momentum, like pushing a ball to keep it rolling in the same direction. 

 Bias-Corrected Second Moment (𝑣𝑡̂): This smoothens the squared gradient for adaptive steps:  

𝑣𝑡̂  =
𝑣𝑡

1−𝛽2
𝑡         Equation 13 

with  

𝑣𝑡  =  𝛽2𝑣𝑡−1  +  (1 − 𝛽2)𝑔𝑡
2       Equation 14 
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and β2 = 0.999.  

It makes steps smaller for noisy directions (high variance) and larger for consistent ones. 

 Numerical Stability Term (ϵ): A tiny number (10−8) added to avoid dividing by zero if 𝑣𝑡̂ is very small, thus keeping 

calculations safe. This setup helps the model learn efficiently from Nairobi’s traffic data, handling complexities 

like varying vehicle noise. 

2.8. Statistical Descriptors for Input Data  

Table in Appendix 4 presents statistical descriptors for the input data with a significance value α = 5% for the 

Kolmogorov-Smirnov (K-S) test. Statistical descriptors summarize data. 𝑥̅ is the mean (average value), σ is the 

standard deviation (how it is spread out), Min and Max are the smallest and largest, Range is the Maximum minus 

the Minimum, IQR is the interquartile range (middle 50% spread), C.V. is the coefficient of variation (relative spread 

in %), Kurtosis measures tail heaviness (high means more extremes), Asy. Coe. is asymmetry (skewness, positive 

means tail to the right), Kol. Smi. is the K-S test p-value (low means not normal distribution), Proportion is % of 

vehicle types. 

2 . 8 . 1 .  E v a l u a t i o n  

Performance was evaluated using MAE, RMSE, and R2, with Pearson correlation analysis between predicted and 

actual Leq, obtained from SLM data. The performance metrics were compared to those of traditional machine 

learning models and literature-based models. 

2.8.2. M o d e l  D e p l o y m e n t  

The model is deployed on a web-based dashboard, accessible to the public. Users input parameters such as the location, 

time, speed, and vehicle count, and the dashboard outputs predicted Leq in real-time, visualized via interactive charts. 

The platform supports noise monitoring, public education, and integration with traffic management systems. 

3.Results 

The table in Appendix 5 shows the equivalent sound levels measured at different time intervals using the SLM 

for the 42 sampling locations  

3.1. Nairobi Road Traffic Noise Prediction Model 

The Nairobi’s Smart RTN Prediction Model (MLP) 𝐋𝐞𝐪𝐩𝐫𝐞𝐝𝐢𝐜𝐭𝐞𝐝  =  𝐖𝟑𝐡𝟐  +  𝐛𝟑 Equation 15 

Where h2 is defined as in Equation 2 and W3 ∈ R1×50, and b3 ∈ R represents the weight matrix and bias for the 

output layer (single prediction). 
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3.2. Model evaluation and validation 

The MLP model achieved an MAE of 0.97 dBA, RMSE of 1.38 dBA, and R2 of 0.90 with a Pearson Correlation 

coefficient of 0.9476 between the predicted and the measured Leq values, indicating strong predictive accuracy. 

Table 2 compares the MLP with other models, showing superior performance over CoRTN, which has an MAE 

of 5.0 dBA and an R² of 0.80, and RLS-90, which has an MAE of 11.0 dBA and an R² of 0.50, attributed to its 

ability to capture Nairobi’s unique traffic patterns. The UAE ANN (Mansourkhaki, Berangi, Haghiri, and 

Constantinescu, 2018) and Torija ANN (Torija and his colleagues, 2012) performed similarly well; however, the 

Current MLP is optimized for Nairobi’s context. 

Table 1: Model evaluation and validation with existing predictive models 

Model MAE (dBA) RMSE (dBA) R2 

Current MLP 0.97 1.38 0.90 

Bogotá MLP [14] [14] 1.19 1.56 0.87 

ANN (Torija) [8] [8] 0.87 1.08 0.94 

ANN (UAE) [11] [11] 0.79 0.97 0.95 

XGBoost 1.14 1.39 0.89 

SVR 2.67 3.59 0.30 

Random Forest 1.09 1.43 0.89 

Linear Regression 3.74 4.44 -0.07 

CoRTN 5.00 – 0.80 

RLS-90 11.00 – 0.50 

Figure 5: Average Difference Between Measured and Predicted Leq 
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Figure 6: An example of a day SPL variation prediction for Location 1 

The plot in Figure 6 above shows the actual and predicted change in Leq over time, illustrating the differences between 

measured and model-predicted noise levels per hourly interval from 6 AM to 6 PM. The close alignment, especially 

during peak hours, demonstrates the model’s capability to capture temporal variations in RTN, with minor 

deviations reflecting real-world complexities like unmodeled variables. 

4.Discussion 

From the results of this study, it can be deduced that, the MLP model developed effectively captures Nairobi’ 

city’s complex traffic dynamics, including the high prevalence of motorcycles and variable flow types, which 

contribute significantly to road traffic noise (RTN) variability. As shown in Table 1, the model outperforms 

traditional models like CoRTN and RLS-90, primarily due to its ability to adapt to Nairobi’s heterogeneous vehicle 

fleet and congested road networks, which these conventional models fail to address. This adaptability stems from 

the model’s use of a Multi-Layer Perceptron (MLP) ANN, optimized through grid search hyperparameter tuning 

to handle non-linear relationships in traffic data. The model’s predictive accuracy supports cost-effective noise 

monitoring, offering a scalable solution for urban planning in rapidly growing African cities like Nairobi. By 

deploying the model on a web-based dashboard, it enables real-time noise prediction, facilitates stakeholder 

engagement, and supports public education on noise pollution. The platform’s integration with traffic management 

systems can inform urban noise policies and mitigate health impacts, such as stress and subjective annoyance. 

However, the model’s reliance on data from this study limits its ability to account for seasonal traffic variations 

or unmodeled variables like road surface type and weather conditions, which future research should address to 

enhance robustness. 
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Figure 7: Performance Comparison (All Models) bar chart showing MAE, RMSE, and R2 for each model 

 

Figure 8: Box Plot of Prediction Errors for All Models 

Predictive modeling offers significant advantages, including cost-effective noise monitoring and scalability, which 

are particularly beneficial for urban planning in rapidly growing cities like Nairobi. The deployment of the model 

on a web-based dashboard facilitates real-time noise prediction [21], enables stakeholder engagement, allows for 

public education on noise pollution, and integrates with traffic management systems to mitigate noise at major 

hotspots. Practical implications include informing urban noise policies and reducing health impacts like stress and 

subjective annoyance. However, its limitations lie in the model’s reliance on this study’s data, which may not 

account for seasonal traffic variations, and the absence of variables like road surface type or weather conditions. 

5.Conclusion 

This study developed the first smart RTN prediction model for Nairobi, leveraging an MLP ANN with high 
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accuracy and surpassing traditional models like CoRTN and RLS-90. The model, tailored to Nairobi’s traffic 

dynamics, is deployed on a public web dashboard, enabling real-time noise monitoring and prediction and citizen 

engagement. The study recommends including real-time data integration, expanding input variables such as road 

surface and weather, and collaboration with traffic authorities to enhance urban noise management. This pioneering 

model sets a baseline for smart noise prediction in African cities, with the potential for broader application. 
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6.Appendix 1 

Manual Tally form used for traffic count 

 

Figure 9 
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Figure 10 

Appendix 2 

Manual Tally form used for recording speed 

Figure 11 
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Figure 12 

Appendix 3 

Table2: PCU conversion factors 

Bicycle Motorcycle Private 

car 

Pickup SUV PSVs Buses Light 

trucks 

Medium 

trucks 

Heavy 

trucks 

Others 

0.5 1 1 1 1 1.5 4 1.5 5 8 8 
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Appendix 4 

Table 3: showing the Statistical descriptors for input data (significance value α = 5% for K-S) 

Stat. Flow Motorcycles Light Medium Heavy q (PCU) Speed Lanes 

x̄ 11.65 58.24 12.83 5.71 1838.07 50.19 3.07 

0.87 

σ 

 

15.23 

 

38.76 

 

7.45 

 

6.12 

 

580.34 

 

14.82 

 

0.98 

0.34 

Min. 

 

0.00 

 

5.00 

 

0.00 

 

0.00 

 

409.00 

 

25.00 

 

2.00 

0.00 

Max. 

 

63.00 

 

210.00 

 

42.00 

 

21.00 

 

6965.00 

 

85.21 

 

4.00 

1.00 

Range 

 

63.00 

 

205.00 

 

42.00 

 

21.00 

 

6556.00 

 

60.21 

 

2.00 

1.00 

IQR 

 

20.00 

 

50.00 

 

15.00 

 

8.00 

 

1200.00 

 

20.00 

 

2.00 

1.00 

C.V. (%) 

 

130.69 

 

66.55 

 

58.06 

 

107.18 

 

31.57 

 

29.53 

 

31.92 

39.08 

Kurtosis 

 

5.12 

 

4.89 

 

3.45 

 

4.23 

 

3.12 

 

2.89 

 

1.45 

1.23 

Asy. Coe. 

 

2.34 

 

2.10 

 

1.87 

 

2.01 

 

1.65 

 

1.23 

 

0.67 

0.45 

Kol. Smi. 

 

p < 0.001 

 

p < 0.01 

 

p < 0.05 

 

p < 0.01 

 

p < 0.001 

 

p < 0.05 

 

p < 0.1 

p < 0.05        

Proportion 

100.00% 

24.37% 49.84% 14.84% 9.94% 100.00% 100.00% 100.00% 
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Appendix 5 

Table 4: showing the measured/observed RTN levels in Nairobi, Kenya 

LOCATION 

6 

AM-7 

AM 

7 

AM-8 

AM 

8 

AM-9 

AM 

9 AM-10 

AM 

10 

AM-11 

AM 

11 AM-

12 PM 

12 

PM-1 

PM 

1 PM-2 

PM 

2 PM-3 

PM 

3 

PM-4 

PM 

4 PM-5 

PM 

5 

PM-6 

PM 

1 73.52 72.12 71.32 71.92 73.02 74.32 74.92 74.22 72.02 71.32 71.12 71.02 

2 82.89 81.39 80.69 81.29 82.39 83.69 84.29 83.29 81.39 80.59 80.39 80.29 

3 75.99 74.39 73.79 74.39 75.49 76.79 77.39 76.29 75.09 74.39 73.59 73.39 

4 72.2 70.8 71 71.6 72.7 74 74.6 73.5 71.7 71 70.7 70.6 

5 75.35 74.45 74.85 75.45 75.95 77.85 78.45 77.35 75.55 74.85 74.65 74.55 

6 82.92 81.22 81.72 82.32 83.42 84.72 85.32 84.22 82.42 81.72 81.52 81.42 

7 79.46 76.96 78.26 78.86 79.96 81.26 81.86 80.76 78.96 78.26 78.06 77.96 

8 78.9 76.4 77.7 78.3 79.4 80.7 81.3 80.2 78.4 77.6 77.5 77.2 

9 74.22 72.62 73.02 73.62 74.72 76.02 76.62 75.52 73.72 72.92 72.82 72.72 

10 78.69 76.69 76.49 77.09 78.19 79.49 80.09 78.99 77.19 76.39 76.29 76.19 

11 77.71 75.91 75.51 76.11 77.21 78.51 79.11 78.01 76.21 75.41 75.31 75.21 

12 80.69 78.59 78.49 79.09 80.19 81.49 82.09 80.99 79.19 78.49 78.29 78.19 

13 81.07 78.97 78.87 79.47 80.57 81.87 82.47 81.37 79.57 78.87 78.67 78.57 

14 76.1 74 73.9 74.5 75.6 76.9 77.5 76.4 74.6 73.9 73.7 73.6 

15 75.25 73.15 73.05 73.65 74.75 76.05 76.65 75.55 73.75 73.05 72.85 72.55 

16 75.74 73.64 73.54 74.14 75.24 76.54 77.14 76.04 74.24 73.44 73.34 73.24 

17 70.89 69.89 68.19 67.79 70.19 76.39 77.79 76.69 72.89 71.09 70.69 70.39 

18 75.19 74.09 73.99 74.19 74.89 76.39 77.19 76.59 74.79 74.09 73.79 73.49 

19 72.58 71.08 70.38 70.98 73.38 74.98 76.08 74.78 72.18 71.38 70.88 70.68 

20 68.86 66.76 66.36 67.46 69.66 72.76 74.26 73.16 70.36 68.66 67.96 67.16 

21 68.71 67.71 66.51 67.11 69.61 73.91 75.81 74.71 70.91 69.21 68.11 67.71 

22 73.03 71.73 71.43 71.83 74.03 75.23 75.93 74.83 73.03 72.33 71.73 71.53 

23 80.86 78.96 78.66 79.26 81.66 84.56 85.46 84.36 82.56 80.86 80.26 80.06 

24 73 70.9 70.8 71.4 73.9 76.5 77.7 76.6 74.8 73 72.5 72.3 

25 74.44 72.34 72.24 72.84 75.34 77.74 79.14 78.11 76.24 74.84 74.54 74.34 

26 70.37 68.27 68.17 68.77 71.27 73.57 75.07 73.97 72.17 70.97 70.17 69.97 

27 72.7 71.1 70.5 71.1 73.6 76.1 77.4 76.3 74.5 73.9 71.9 71.7 

28 71.36 69.86 69.16 69.76 72.16 74.46 75.96 74.86 73.06 72.06 70.66 70.36 

29 76.94 74.84 74.74 75.34 77.74 79.64 81.54 80.44 78.94 77.64 76.54 76.24 

30 74.48 72.38 72.28 72.88 75.28 77.18 79.08 77.98 75.76 75.18 74.58 74.38 

31 75.48 73.38 73.28 73.88 76.28 78.18 80.08 78.98 76.3 75.68 75.18 74.88 

32 69.78 67.68 67.58 68.18 70.58 72.48 74.38 73.28 71.48 70.48 69.68 69.38 
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33 80.7 78.6 78.5 79.1 81.5 83.9 85.3 84.2 82.4 81.37 80.5 80.3 

34 74 73.2 72.5 73.1 74.5 77.4 78.3 77.2 75.4 73.55 73.2 73 

35 83.33 81.93 81.13 82.23 84.13 86.03 87.93 86.83 84.03 82.33 82.03 81.83 

36 76.54 74.44 74.34 74.94 77.44 79.24 81.24 80.14 77.34 75.64 75.44 75.24 

37 77.18 75.08 74.98 75.58 78.08 79.88 81.88 80.78 77.08 76.58 75.88 75.68 

38 81.64 79.54 79.44 80.04 82.54 85.04 86.34 85.24 83.44 82.34 81.54 81.24 

39 83.3 82 81.1 81.7 84.2 86 88 86.9 85.1 84 83.6 83.3 

40 77.61 76.21 75.41 76.01 78.41 80.31 82.21 81.11 79.31 77.61 77.11 76.99 

41 78.41 76.31 76.21 76.81 79.21 81.61 83.01 81.91 79.11 77.91 77.31 77.01 

42 77.07 74.97 74.87 75.47 77.87 79.77 81.67 80.57 78.77 76.07 75.67 77.77 

 


