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Abstract 

This paper presents a comparative study of automatic scaling mechanisms in Kubernetes clusters. The objective 

of this study is to conduct a comparative analysis of various techniques for automating the scaling of 

containerized applications in Kubernetes clusters. The methodological foundation of the research comprises a 

systematic review and analytical processing of current scientific publications in the field. The work examines the 

architectural principles, key configuration parameters, and built-in limitations of traditional tools, including the 

Horizontal Pod Autoscaler, Vertical Pod Autoscaler, and Cluster Autoscaler. Particular attention is devoted to 

advanced solutions designed to enhance the adaptability and predictability of scaling. These include event-driven 

scaling using KEDA, high-efficiency node management with Karpenter, and the implementation of predictive 

strategies based on machine learning models. The scientific novelty of the study lies in the description of a 

comparative classification model of autoscaling techniques, which enables the formulation of clear 

recommendations for selecting the optimal strategy based on the type of workload: microservice web 

applications, big data processing pipelines, or resource-intensive machine learning tasks. The analysis suggests 

that to achieve high performance and resilience, it is advisable to combine various approaches — including 

horizontal, vertical, and cluster scaling — supplemented by heuristic or predictive methods. The findings will be 

valuable to DevOps engineers, cloud system architects, and researchers focused on optimizing operational 

performance and resource management in modern distributed environments. 
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I. Introduction  

In the modern IT ecosystem, containerization serves as a key architectural approach for deploying and managing 

applications. The Kubernetes platform has firmly established itself as the industry standard for container 

orchestration, providing an extensive toolkit for automating deployment, scaling, and maintenance processes of 

distributed systems [1]. 

The relevance of optimizing computational resource utilization is continually increasing. The variable nature of 

workloads, especially in microservice architectures where traffic volumes can change by orders of magnitude 

over very short intervals, necessitates the implementation of intelligent and adaptive scaling algorithms. 

Automatic scaling is regarded as one of the core functions: it not only contributes to cost reduction by releasing 

idle capacity but also enhances system reliability by promptly provisioning resources to handle peak loads, 

thereby ensuring high service availability. 

Nevertheless, a methodological gap is observed in the scientific literature: there is no systematized and 

comprehensive comparison of modern auto-scaling approaches that extend beyond the standard Kubernetes 

mechanisms. Most studies are limited to the analysis of a single tool or model, whereas a thorough evaluation of 

native, event-driven, and predictive methods remains unaccomplished. 

The objective of this research is to conduct a comparative analysis of various automatic scaling techniques for 

containerized applications in Kubernetes clusters. 

The scientific novelty of the study lies in the description of a comparative classification model of auto-scaling 

techniques, which enables the formulation of clear recommendations for selecting the optimal strategy depending 

on the workload type: microservice web applications, big data processing pipelines, or resource-intensive 

machine learning tasks. 

The research hypothesis posits that, under the diversity of use cases — ranging from web services to 

computational tasks and machine learning models — maximal efficiency and reliability can be achieved not by 

applying a single universal mechanism, but through the combined use of multiple scaling methods, each 

optimized for the specific requirements of the particular workload. 

At the same time, the study takes the form of a theoretical review and does not include an empirical assessment 

of the performance of the systems under consideration in a controlled environment, which defines its principal 

limitations. 

II. Materials and Methods 

As a starting point, many authors rely on the results of annual reports and survey studies, which provide an 

overview of the general state of cloud-native technologies. Thus, the CNCF Annual Survey 2023 report describes 

current trends in Kubernetes adoption and the primary challenges faced by operators in scaling [1].  This report 

is important because it quantitatively confirms the relevance of the problem, shifting it from a purely technical 
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task to a strategic priority for business. This underscores the need to systematize and compare approaches, as 

inefficient scaling directly leads to increased operating expenditures and decreased service reliability. 

The next strand of work is devoted to the systematization of knowledge in this domain. Dogani J., Namvar R., 

Khunjush F.  [7] propose a detailed taxonomy of autoscaling techniques in container and edge/fog environments, 

classifying methods as reactive, predictive, and hybrid, and considering their application in various deployment 

topologies. Senjab K., and his colleagues [9] review task scheduling algorithms in Kubernetes, emphasizing that 

the effectiveness of autoscaling largely depends on interaction with the resource scheduler system. Rabiu S., 

Yong C. H., Mohamad S. M.S.  [10] analyze load balancing and autoscaling challenges in microservice 

architectures, focusing on the integration of load controllers (e.g., NGINX, Istio) with HPA mechanisms to 

ensure service stability and fault tolerance. These systematic works form the necessary theoretical basis, allowing 

us to consider auto-scaling not as an isolated function, but as part of a complex resource management system. 

Their value lies in showing how the effectiveness of scaling depends on the coordinated work of the planner, 

balancer, and controller itself. 

Classic approaches to HPA are primarily oriented toward reactive scaling based on CPU and/or memory 

consumption. Nguyen T. T., and his colleagues  [2] describe the standard mechanism for dynamically adjusting 

the number of pods using metrics from the Utilization Metrics API and demonstrate its effectiveness for 

moderately loaded web services. Augustyn D. R., Wyciślik Ł., Sojka M. [3] investigate the possibilities of 

adaptively tuning HPA parameters (target values, check intervals) using Bayesian optimization methods, thereby 

simultaneously addressing latency and throughput requirements in cloud deployments. Rolík O., Volkov V. [4] 

propose their horizontal scaling algorithm, based on a feedback controller and peak-smoothing mechanisms 

(low–pass filtering), to prevent overregulation of replica counts during sudden load changes. These studies 

demonstrate attempts to improve the basic reactive approach without relinquishing its simplicity. Work [3] 

employing Bayesian optimization is of particular interest, as it transforms HPA tuning from a manual process 

into an automated loop; however, the fundamental problem of delayed response to load in these approaches 

remains. 

For scenarios with highly spiky or seasonal workloads, reactive autoscaling is insufficient; predictive models are 

employed instead. Dang-Quang N. M. and Yoo M. [6] apply bidirectional LSTM neural networks to forecast 

future loads and proactively adjust pod counts, demonstrating a reduction in failures during peak loads. Mondal 

S. K. and his colleagues [8] combine mathematical modeling methods (ARIMA, exponential smoothing) with a 

configurable autoscaling scheme, allowing flexible threshold adjustments to the characteristics of each workload 

and ensuring more accurate adherence to specified SLOs. These studies mark a transition from a reactive to a 

proactive paradigm, which constitutes a qualitative leap in ensuring service reliability. The use of complex 

models such as LSTM [6] makes it possible to capture nonlinear dependencies in load data, while simultaneously 

increasing the requirements for the quality of historical data and the computational resources needed to train the 

model itself. 

A line of research has emerged focusing on the peculiarities of autoscaling AI and ML workloads, as well as the 

portability of solutions across different cloud providers. Emma L. [5] examines multi-cloud AI strategies, 
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describing containerization patterns for models and orchestration tools that enable dynamic redistribution of 

workloads among AWS, Azure, and Google Cloud to optimize cost and performance. Nuthalapati A. [11] focuses 

on scaling AI applications in the cloud with consideration for model efficiency (model pruning, quantization) 

and workload distribution, proposing an architecture in which HPA integrates with monitoring systems for ML-

container-specific metrics (GPU utilization, inference latency) to achieve more precise resource management. 

This direction emphasizes that for modern AI/ML tasks, simple scaling by CPU/RAM is no longer sufficient, 

and the focus is shifting to specialized metrics [11]. In addition, work [5] raises an important architectural 

question of solution portability, since coupling to hardware accelerators of a specific provider can become a 

serious obstacle in multi-cloud environments. 

The literature exhibits a contradiction between the simplicity of reactive HPA mechanisms (low implementation 

complexity) and the high potential of predictive approaches (more precise adaptation to peak loads). On one 

hand, Bayesian optimization methods and LSTM forecasts improve scaling quality but require data and complex 

configuration. On the other hand, classic HPA remains popular due to its integration into Kubernetes and ease of 

use; however, it often fails to cope with dynamically changing conditions. Moreover, despite the emergence of 

multi-cloud and AI-oriented studies, there remains a shortage of works dedicated to GPU workload autoscaling 

and the integration of HPA with the Cluster Autoscaler and Vertical Pod Autoscaler. Energy- and cost-aware 

scaling, as well as the interaction of scheduling algorithms with autoscaling in heterogeneous clusters, are also 

underexplored. These directions represent open challenges for further research. 

III.Results and Discussion  

In Kubernetes, the autoscaling mechanisms are structured according to a three-tier model, allowing for both the 

dynamic adjustment of the number of pods and the adaptation of the cluster configuration itself to actual 

operating conditions. At the first level is the Horizontal Pod Autoscaler (HPA) — a controller implementing a 

control loop: at each step it queries the Metrics Server, collecting up-to-date metrics (CPU load, RAM usage or 

any custom metrics integrated via Prometheus adapters and similar systems), after which it compares them with 

predefined target values. The HPA configuration specifies threshold levels and scaling policies that determine 

the rate and steps of pod count changes, smoothing abrupt fluctuations, and preventing spikes in load. This 

approach is ideally suited to stateless applications with a predictable correlation between traffic and resource 

consumption; however, the reactive nature of HPA means that scaling is triggered only after a threshold is 

exceeded, which can lead to brief performance degradation during a sudden increase in load [2]. A schematic 

representation of the HPA control loop is shown in Figure 1. 
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Figure1: Architectural scheme of the Horizontal Pod Autoscaler (HPA) [2, 11] 

The second component of the system, Vertical Pod Autoscaler (VPA), does not aim to change the number of pod 

instances as HPA does, but is designed for dynamic adjustment of CPU and memory requests and limits of 

already deployed containers. The collection and analysis of historical metrics enables VPA to generate well-

founded recommendations for resource values. It supports three modes of operation: 

• Off: only generates recommendations without making changes to the configuration; 

• Initial: applies optimal resource parameters only when a new pod is created; 

• Auto: automatically adjusts requests and limits in real time, which requires restarting the corresponding pod 

and may lead to brief service interruptions. 

The main advantage of VPA lies in precisely fitting resources to the actual needs of applications with variable 

load, thereby increasing pod density on nodes. At the same time, the Auto mode carries the risk of brief downtime 

during container restart, which is unacceptable for mission-critical services [3]. 

At a higher level, Cluster Autoscaler (CA) – the component responsible for scaling the entire cluster by adding 

or removing worker nodes (virtual or physical machines)- operates. When pods in Pending state appear in the 

cluster due to insufficient resources (CPU, RAM or GPU), CA uses cloud provider APIs (AWS, GCP, Azure, 

etc.) to initiate the creation of additional nodes, and under low load removes idle machines if all their pods can 

be safely redistributed onto the remaining nodes. Effective operation of CA requires coordinated interaction with 

HPA and VPA, as well as a thoughtful load-balancing strategy across availability zones. A summary comparison 

of these mechanisms is presented in Table 1. 
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Table 1: Comparative analysis of embedded Kubernetes autoscaling mechanisms [2, 3, 5] 

Characteristic Horizontal Pod Autoscaler 

(HPA) 

Vertical Pod Autoscaler 

(VPA) 

Cluster Autoscaler (CA) 

Object of scaling Number of pods (replicas) Pod resources (CPU/RAM 

requests & limits) 

Number of cluster nodes 

Trigger Exceeding target metrics 

(CPU, RAM, custom) 

Analysis of historical resource 

consumption 

Insufficient resources for pods 

(Pending state) or low node 

utilization 

Main scenario Stateless applications with 

variable load 

Stateful applications, 

applications with 

unpredictable resource 

consumption 

Any scenarios where the load 

may exceed the capacity of the 

current cluster 

Advantages Ease of configuration, broad 

applicability, and industry 

standard 

Resource utilization 

optimization, increased 

placement density 

Infrastructure management 

automation, cost savings 

Disadvantages Reactive nature, response 

latency, inefficient for event-

driven workloads 

Requires pod restarts (in Auto 

mode), which affects 

availability 

Latency in provisioning new 

nodes (minutes), dependency 

on cloud provider 

Standard scaling mechanisms, despite their functionality, remain predominantly reactive and operate only on 

typical metrics, which has stimulated the development of more intelligent solutions. One such solution is the 

KEDA project (Kubernetes Event-Driven Autoscaling), incubated by CNCF. Unlike HPA, which reacts only to 

CPU and memory parameters, KEDA is capable of initiating changes in the number of pods based on events 

arriving from a wide range of sources, including queue length in Kafka or RabbitMQ, message count in Azure 

Service Bus, custom metrics from Prometheus, and many other systems. Instead of periodically polling node 

load metrics, it triggers scaling (up to a complete zeroing of replicas) in response to external triggers [4]. 

The architecture of KEDA is built around a set of scalers — adapters that extract metrics from various sources 

and forward them to a ScaledObject. It is the ScaledObject that manages the target application deployment, 

adjusting the number of replicas according to incoming events (figure 2). This approach is particularly effective 

for asynchronous workloads and data-streaming scenarios, where event intensity does not necessarily correlate 

with CPU or memory consumption. 
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Figure2: Event-oriented scaling architecture with KEDA [4] 

One of the most notable innovations in the Kubernetes ecosystem is Karpenter — AWS’s response to the classic 

Cluster Autoscaler. Unlike the latter, which operates on autoscaling groups, Karpenter initiates the provisioning 

of nodes directly through the cloud API, bypassing the intermediate abstraction layer. This direct resource 

allocation mechanism reduces the interval from a pod entering the Pending state to the actual application launch 

to mere tens of seconds. In contrast, the traditional CA often requires several minutes [5]. An additional 

advantage is the more flexible instance selection, including the dynamic utilization of spot instances, which offers 

considerable scope for optimizing operational costs. 

The next evolutionary step has been predictive scaling based on machine learning. Instead of a reactive approach, 

where automation catches up with increased load, algorithms analyze historical metrics (for example, stored in 

Prometheus) and generate forecasts using time-series models such as ARIMA as well as recurrent LSTM 

architectures [6, 7]. The forecasted value is then supplied to the HPA as a custom metric, enabling preemptive 

scaling up or down of pod counts before the onset of peak windows. This approach is particularly beneficial for 

workloads with pronounced diurnal or weekly patterns — a classic example being marketplaces during sale 

periods or streaming services during major broadcasts. 

A critical element of implementation is the selection of metrics and policies. Relying solely on CPU utilization 

and memory consumption is convenient, but it does not always accurately reflect the actual bottleneck. In I/O-

sensitive applications or when interacting with external services, business metrics become critical: RPS, median 

response latency, and the number of active sessions. Thanks to the Prometheus ecosystem and HPA adapters, 

such multidimensional scaling schemes can be implemented with minimal effort [10]. Practice shows that the 

best results are achieved by combining static guarantees (a minimum number of replicas to maintain fault 

tolerance) with dynamic rules that use multiple metrics simultaneously. 

Additional challenges arise when working with stateful components and tasks requiring hardware accelerators. 

Horizontal scaling of databases or message queues involves creating new pods and attaching persistent volumes, 

as well as data replication and synchronization [8]. For ML workloads utilizing GPUs or TPUs, not only are the 

available accelerators important, but also the network topology between them is important. Kubernetes tools — 

including taints/tolerations, node affinity, and anti-affinity — enable the isolation of GPU pools and control of 
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pod placement, thereby optimizing throughput and latency [9, 11]. 

The orchestration process and ensuring fault tolerance are no less significant. The effect of instantaneous pod 

scaling is nullified if the layer responsible for cluster expansion (whether CA or Karpenter) fails to provision 

nodes promptly. During scale-down, the Pod Disruption Budget ensures that the minimum required number of 

instances remains operational. For stateful services, a graceful shutdown with state preservation is also required. 

Ultimately, the choice of an autoscaling strategy becomes a multifaceted engineering task that requires a 

synthetic view of application architecture, traffic patterns, and business economic requirements. A judicious 

combination of tools and methods — from Karpenter’s direct node provisioning to machine learning-based load 

forecasts — enables the building of a system that reliably withstands peaks while remaining cost-effective in 

everyday operation. 

Thus, one can observe a clear paradigm shift: from the use of isolated, reactive tools to the construction of 

comprehensive, multi-layered autoscaling systems. The modern approach consists not in selecting a single best 

tool but in their judicious composition. For example, HPA can control basic horizontal scaling by RPS, KEDA 

handles asynchronous event-driven workloads within the same system, while Karpenter at the cluster level 

ensures the fastest and most cost-effective provisioning of nodes for both types of tasks. This shift from 

configuring individual components to designing a holistic adaptive system changes the role of the engineer, 

requiring not only knowledge of specific technologies but also a deep understanding of application architecture, 

traffic models, and the economic realities of the cloud platform. Ultimately, the maturity of an autoscaling system 

is determined not so much by the sophistication of an individual component as by the harmony of their joint 

operation to achieve specific business goals such as adherence to SLO and cost optimization. 

IV.Conclusion 

The analysis of existing automatic scaling mechanisms within the Kubernetes ecosystem confirms that no 

universal strategy applicable to all categories of workloads currently exists. A rational selection of a specific 

method or their synergistic combination must be based on a scrupulous analysis of both application 

characteristics and infrastructure operational constraints. 

Classic built-in Kubernetes components (HPA, VPA, and Cluster Autoscaler) form a reliable foundation; 

however, their practical value declines as the environment becomes more complex and dynamic. HPA remains 

the de facto standard for stateless services, with a well-predictable request profile, due to its response to pod-

level metrics (CPU, memory, RPS) exhibiting acceptable latency. VPA, by contrast, serves as a fine-grained 

calibration tool for resources. By adjusting requests and limits, it increases utilization efficiency but 

simultaneously elevates the risk of brief downtimes during container redistribution. Cluster Autoscaler is 

essential in public clouds, where cost savings are achieved through elastic management of node groups; 

nevertheless, the inertia of scaling operations (minutes until actual VM provisioning) can become a bottleneck 

for bursty workloads. 

Contemporary next-gen solutions address precisely those scenarios in which basic tools demonstrate limitations. 



American Academic Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) - Volume 103, No  1, pp 137-146 

 

145 
 

KEDA integrates optimally into event-driven topologies and asynchronous data-processing pipelines, providing 

the ability to scale to zero and thereby minimize idle expenditure. Karpenter, by leveraging direct interaction 

with the cloud API, significantly outperforms the traditional Cluster Autoscaler in node provisioning latency and 

instance selection flexibility, rendering it the preferred choice for environments characterized by sudden and 

hard-to-predict peaks as well as for cost-optimization tasks. Predictive scaling algorithms trained on historical 

telemetry series currently represent the cutting edge of the technology: they are particularly effective for services 

with pronounced diurnal or weekly seasonality (e-commerce platforms, streaming media), allowing compute 

capacity to be reserved in advance and thus preventing degradation of QoS during peak load periods. 

Based on the above, the following practical recommendations can be formulated: 

• Standard web services and APIs: a combination of HPA targeting RPS and p99 latency with Karpenter is 

optimal as it ensures both rapid response to high-level metrics and swift addition/removal of nodes 

• Asynchronous tasks and data-processing pipelines: KEDA is recommended, as it provides native triggers for 

queues, brokers, and streaming services and can reduce the cluster to zero between waves of tasks 

• ML workloads with GPU dependency: application of Karpenter with correctly configured taints and tolerations 

is advisable, augmented by a predictive autoscaling model (for example, based on time-series forecasting) if 

request patterns exhibit repeatable behavior 

Probable vectors for the further evolution of automatic scaling lie, first, in the deeper integration of predictive 

approaches directly into the Kubernetes core and its control plane, and second, in the development of unified 

mechanisms for hybrid and edge-computing scenarios, where resource management is complicated by variable 

network connectivity and the heterogeneity of hardware profiles. Research and engineering efforts of the 

community will focus on these domains in the coming years. 
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