

294

American Academic Scientific Research Journal for Engineering, Technology, and Sciences

ISSN (Print) 2313-4410, ISSN (Online) 2313-4402

https://asrjetsjournal.org/index.php/American_Scientific_Journal/index

Typical Patterns of Interaction between a React Frontend

and a WordPress Backend

Karen Sarkisyan
*

Senior Software Engineer at EPAM Systems, Inc, Belgrade, Serbia

Email: karen.sarkisyan01@gmail.com

Abstract

This article reviews current practices of using React frontend with WordPress backend in a headless setup and

typifies main data-transfer patterns, rendering strategies, and auth/reactivity mechanisms. Massive growth in the

headless-CMS market, a leading position for WordPress, and the widespread use of React justifies this study’s

relevance. The novelty of this work lies in building a three-dimensional model that integrates the data channel

(REST vs GraphQL vs RPC) with rendering strategy (CSR, SSR, SSG/ISR) and authorization/update approach

(Cookie + Nonce, JWT, Webhooks/Subscriptions), allowing the typical interaction patterns — over ten of them

— to be classified and assessed. The significant findings indicate that REST-SPA has a minimal entry threshold

due to the built-in WP-REST API but needs more caching to completely get rid of the “N+1” problem and

reduce network latency; GraphQL-SPA solves aggregated request problems and also has strict typing but it adds

much complexity to schema and access-control design; Next.js Solutions with SSR/ISR have both Static

Generation and Incremental Updates via Webhooks or GraphQL Subscriptions. They are high performing, SEO

friendly, and offer content consistency; in private scenarios, JWT authorization or request proxying is used; for

headless e-commerce, CoCart is chosen; microservice REST-RPC endpoints extend platform capabilities

without forking the core. This article will be helpful for architects, developers, and technical leaders choosing an

optimal headless infrastructure based on React and WordPress.

Keywords: headless; React; WordPress; REST API; GraphQL; SSR; SSG; ISR; JWT; webhooks.

--

Received: 5/1/2025

Accepted: 6/22/2025

Published: 7/4/2025

--

* Corresponding author.

https://asrjetsjournal.org/index.php/American_Scientific_Journal/index

American Academic Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) - Volume 102, No 1, pp 294-305

295

1. Introduction

The headless approach resolves the age-old conflict between dynamic-content requirements and frontend speed

by decoupling the traditional WordPress monolith into an administrative “content‐management system” and an

autonomous presentation layer. Developers gain the flexibility to choose their tech stack, and editors retain the

familiar WP-admin interface; however, the price of freedom is increased integration complexity, the necessity

for bidirectional authorization, and the need to readdress SEO tasks previously automated by themes. This

balance of benefits and costs makes the study of typical interaction patterns in demand.

The market confirms the maturity of the concept: according to Market Research Future, the global headless-

CMS market reached USD 3.26 billion in 2024 and, at an average annual growth rate of 21.4%, will exceed

USD 22 billion by 2034 [1]. A WP Engine survey showed that 73% of companies already use headless, and

98% plan to evaluate it within the next 12 months; 60% are budgeting infrastructure increases for these projects

[2]. WordPress remains the dominant CMS platform, accounting for 61.2% of sites where the content‐

management system is known, making it the most frequent backend in headless scenarios [3]. The React +

WordPress pairing is driven not by marketing but by development statistics and economics. Last year, 85% of

frontend developers used React, and only one in five rated it negatively [4], guaranteeing easy hiring and a

vibrant ecosystem of libraries. WordPress, in turn, offers a mature content model, thousands of plugins, and

inexpensive hosting; migrating to headless mode does not require abandoning the familiar editorial UX. These

factors form a rational business motivation: minimal migration costs, fast time-to-market, and the prospect of

scaling via CDN and serverless without recursive reengineering of the content base.

2. Materials and Methodology

The materials and methodology of this study are based on a systematic analysis of 23 sources, including

industry reports, developer surveys, plugin and npm package statistics, official documentation of WordPress and

React frameworks, and production‐deployment case studies. Key sources include: the Market Research Future

report on the headless-CMS market [1], the WP Engine survey on headless adoption [2], W3Techs data on

WordPress’s CMS market share [3], The Software House study on frontend‐stack popularity [4], official

releases WordPress 4.7 and WPGraphQL [5, 6], Next.js and Apollo Client download metrics from npm [7, 17],

Datadog and Cloudflare reviews of serverless infrastructure [8, 9], the Ledger case on Vercel [10], as well as

plugins for JWT authorization and REST caching [14, 16] and CoCart usage statistics for headless

WooCommerce [21].

The theoretical foundation comprises works on the evolution of WordPress from a monolithic CMS to an API‐

centric platform [5, 6, 23], studies on headless‐architecture practices and their implementation economics [1]–

[4], and reviews of modern React‐application rendering approaches (CSR, SSR, SSG/ISR) and their impact on

user experience [7, 13]. To assess serverless execution technologies and edge extensions, data from Datadog on

AWS Lambda and Google Cloud Functions adoption [8] and the Cloudflare Workers report [9] were employed.

Yet the data also reveal persistent asymmetries. Surveys by WP Engine and The Software House indicate that

American Academic Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) - Volume 102, No 1, pp 294-305

296

only a minority of WordPress agencies have transitioned client work to a fully headless model, primarily due to

the perceived operational overhead of maintaining two separate stacks [2, 4]. Case studies, such as Ledger’s

migration to Vercel, indicate that these overheads can be amortized when global latency budgets are tight or

when edge personalization is required; however, the tipping point varies sharply by traffic volume and team

maturity [10]. Likewise, Datadog’s telemetry on cold-start distributions for AWS Lambda suggests that

serverless rendering is price-efficient for bursty workloads. In contrast, high-QPS e-commerce stores may still

lean on provisioned SSR hosts or incremental static regeneration to guarantee <100 ms TTFB [8].

The analytical model proposed here helps interpret such trade-offs. Projects anchored on REST + CSR can ship

quickly and leverage existing WP plugins with minimal friction, but they inherit cookie-based nonce semantics

that complicate cross-origin scenarios [5, 12]. GraphQL pivots (WPGraphQL + Apollo) add schema

introspection and fine-grained queries, yet they require a JWT or signed-header strategy to remain cache-

friendly at the CDN layer [6, 13, 14]. On the rendering axis, ISR has gained traction because it combines CDN-

level cache hits with on-demand revalidation hooks, a pattern that Next.js and Vite have begun to abstract

behind one-line configuration flags, effectively narrowing the operational gap between Jamstack and traditional

server-side rendering (SSR) [7, 17].

The research methodology included three interrelated stages. First, a systematic review and content analysis of

official WordPress documentation (REST API, WPGraphQL, register_rest_route) and the React ecosystem

(Next.js, Vite, Apollo Client) to identify primary interfaces, query schemas, and caching options [5, 7, 17].

Second, quantitative collection of metrics: CMS market share and adoption statistics (W3Techs, Barn2) [3, 11],

weekly npm‐package downloads (Next.js, Apollo Client) [7, 17], active plugin installations (WPGraphQL,

JWT, CoCart) [5, 14, 21], and usage of serverless solutions and webhook triggers [8, 9]. Third, development of

an analytical model comprising three axes—data channel (REST vs. GraphQL vs. RPC), rendering strategy

(CSR, SSR, SSG/ISR), and authorization/reactivity mechanism (Cookie + WP Nonce vs. JWT vs.

Webhooks/Subscriptions) [12, 13].

Within the framework of the study, primary sources included open industry reports, NPM repository statistics,

the WordPress plugin catalog, and official documentation. This documentary foundation provided a

representative snapshot of the technologies as of early 2025; however, it did not include the author’s load-testing

experiments or response-time measurements—their implementation could constitute a promising avenue for

further work. Additionally, the sample’s time frame is limited to April–May 2025; later versions of WordPress,

Next.js, or new caching methods may introduce additional differences that we have not yet reflected in the

model. This paper examines the React + WordPress setup as the most common combination in headless project

use; a deep dive into other front-end tools or CMSs was not part of this study. The selected authorization options

(Cookie + Nonce and JWT) and reactivity mechanisms (Webhooks, experimental GraphQL Subscriptions) are

described in their most common form and do not cover exotic scenarios such as multi-factor authentication or

Zero-Trust networks.

American Academic Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) - Volume 102, No 1, pp 294-305

297

4. Results and Discussion

As the Introduction outlines, transitioning to a headless architecture is impossible without an API-centric

WordPress. In its early years, the platform generated HTML directly via PHP templates, and external

integrations were limited to XML-RPC. A qualitative shift occurred in December 2016, when version 4.7

introduced full REST endpoints for posts, taxonomies, users, and settings, officially opening WordPress to

external clients [6]. The WPGraphQL plugin drove the next evolution, with its strictly typed schema and custom

resolvers, enabling the aggregation of related entities in a single request; active installations of the plugin now

exceed 30,000, and the project is moving toward “canonical” status within the core ecosystem [5]. Thus, over

eight years, WordPress has progressed from server-rendered themes to an API platform that can confidently

serve as the head of any modern frontend framework.

On the client side, React remains the undisputed leader. The classic create-react-app workflow is still popular

for internal dashboards, but meta-frameworks dominate in public-facing products. Next.js—now downloaded

over 10 million times per week on npm—reflects its true market share and ensures long-term community

support [7]. Vite provides rapid local builds and a “hot” developer experience. Paired with WPGraphQL, this

combination addresses two critical needs of headless sites: a strict data model and performant rendering on the

React side.

The final link in the chain is the global edge infrastructure, where functions run closer to the user and offload

work from the PHP backend. Report [8] records that serverless solutions are used by over 70% of organizations

on AWS and 60% on Google Cloud, with adoption continuing to grow, as shown in Figure 1.

Figure 1: Serverless adoption by cloud provider [8]

Upper-layer platforms are developing even more rapidly: over 2.4 million developers now deploy applications

American Academic Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) - Volume 102, No 1, pp 294-305

298

on Cloudflare Workers, R2, and AI services [9], and the Ledger case demonstrated that moving the Next.js

frontend to Vercel Edge Functions yielded a 67% reduction in load time while handling 6–7 million requests per

day [10]. For headless WordPress, heavy operations—from ISR validation to authorization Lambda handlers—

can be moved to the perimeter, preserving the editorial environment on familiar hosting and sharply reducing

TTFB for the end user.

Thus, the evolution of WordPress code, the maturity of the React ecosystem, and the widespread adoption of

edge serverless converge at a technological point where typical interaction patterns become not merely best

practices but a condition for a site’s competitiveness.

Having characterized WordPress’s evolution as a move toward API centrism, defining a coordinate grid on

which specific integration patterns will subsequently be mapped is logical. The first axis is the method of data

delivery. The basic REST layer has been included in the core since version 4.7. According to the report [11], it

is thus formally available to all 472 million sites currently running on WordPress, the platform’s total. Report

[12] showed that WordPress’s overall website market share grew from 27.3% in early 2017 to 43.6% in January

2025, as illustrated in Figure 2.

Figure 2: Historical yearly trends in the usage statistics of content management systems [12]

Extending the schema via register_rest_route enables rapid release of RPC-like endpoints, but REST suffers

from the “N+1” problem for complex selections. The emergence of WPGraphQL was the response, and

Automattic is shepherding it toward canonical status, effectively institutionalizing GraphQL within the

WordPress ecosystem [5]. Thus, on the “REST ↔ GraphQL ↔ RPC” scale, a project’s position is determined

by the balance between ease of implementation and the need for aggregated queries.

American Academic Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) - Volume 102, No 1, pp 294-305

299

The second axis is defined by the choice of rendering strategy. The survey [13] shows that, over the past year,

90% of respondents wrote Single-Page Applications, 59% employed server-side rendering, and 46%

experimented with static generation; the total sample comprised 11,119 developers. The full survey results are

presented in Figure 3.

Figure 3: Which architecture and rendering patterns have you used in the last year? [13]

Figures confirm that CSR remains the “default,” but SSR and SSG/ISR have already moved from niche

techniques into the mainstream. For headless WordPress, this implies three distinct modes: pure SPA—minimal

server dependencies; SSR—optimal TTFB and personalization; SSG/ISR—the ideal option for frequently

updated yet public pages, where Next.js automatically rebuilds content upon receiving a webhook signal.

The third axis is the combination of authorization and reactivity. The classic Cookie + WP Nonce approach

suffices as long as the frontend remains under the backend’s domain; otherwise, developers generally have two

options. One is a JWT layer, for which a WordPress-repository plugin exists with over 60,000 installations,

regularly maintained and supporting refresh tokens [14]. The other is proxying requests through a custom

backend-for-frontend, simplifying security but increasing overall latency. When content reactivity is required,

the picture is completed by WP Webhooks or experimental GraphQL Subscriptions; these send events to

publications and thereby trigger revalidation in the ISR chain. Experience shows that the choice of authorization

mechanism often “drives” the reactivity solution: JWT pairs conveniently with WebSockets or SSE, whereas the

cookie scheme aligns more naturally with REST and one-time nonce tokens.

Combining the three axes—data channel, rendering method, and authorization/reactivity mechanism—any

American Academic Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) - Volume 102, No 1, pp 294-305

300

headless project can be classified, and its bottlenecks can be predicted at the architectural sketch stage. This

forms the basis for selecting a specific React-frontend ↔ WordPress-backend interaction pattern.

The catalog begins with two opposite yet most common patterns, which fit neatly into the previously defined

“channel – render – authorization” coordinates.

REST-SPA relies on the built-in REST layer introduced in WordPress 4.7, one in three public websites on the

Internet. A React frontend, built via Vite or Create React App, calls endpoints such as /wp-

json/wp/v2/posts?per_page=…. To shorten the typical “N+1” request chain, developers add the _embed

parameter or batch calls, and maintain a client-side cache with React Query or SWR. Thanks to improvements

in WordPress 6.1, internal queries for posts and terms now require tens fewer SQL joins, reducing median

REST-response latency without any frontend code changes [15]. However, as traffic grows, the remote database

remains a bottleneck, so in production REST-SPAs almost always supplement with server-side caching: the WP

REST Cache plugin alone—claiming “one-hop in-memory responses”—has over 10,000 active installations and

is regularly updated for new core versions [16]. Thus, REST-SPA offers the lowest entry threshold and zero

external dependencies but pays in excessive network chatter and the complexity of consistent cache invalidation.

GraphQL-SPA resolves both issues at the cost of a more complex setup. The single /graphql endpoint eliminates

“N+1,” and strict typing turns parameter errors into compile-time failures, simplifying development. Apollo

Client reigns supreme on the client: it is downloaded over 3.6 million times weekly, confirming its de facto

standard status in the React ecosystem [17]. To keep latency on par with REST, the WPGraphQL Smart Cache

plugin augments the GraphQL stack; WP Engine practice shows that the Smart Cache + Edge CDN combination

can maintain response times under 100 ms and reduce Next.js incremental-build durations by up to 6000 times

compared to a “cold” GraphQL backend [18]. The main costs of this pattern are the need to design access

controls at the schema level and a steeper team learning curve. Still, these are offset when the domain model

includes dozens of interconnected entities or requires aggregating data in a single request.

Increasing data-model complexity in GraphQL and REST variants drives teams toward the Next.js meta-

framework: its server-side rendering delivers complete HTML markup before client-side JavaScript loads.

Hence, the time to first content is noticeably shorter than in a pure SPA. As noted earlier, the following package

is downloaded over 10 million times weekly, confirming SSR/ISR’s dominance in the React ecosystem [7].

Incremental Static Regeneration—by adding the revalidate parameter to getStaticProps—combines instant

static-page TTFB with dynamically updatable content; Vercel’s internal network caches results regionally,

reducing load on the WP backend and eliminating complete rebuilds on each post save [19]. A typical

WordPress setup has either a Webhooks plugin or WPGraphQL Smart Cache POST to /API/revalidate, where

Next.js rebuilds just the changed pages to keep everything in sync without any manual deploy cycles. This

pattern is justified when projects require SEO, instantaneous content updates, and global reach—e.g., media

portals or marketplaces. Let's assume that the frontend runs in a different domain or has to do content mutations

on behalf of an authenticated user. In that case, a JWT authentication layer is applied to any rendering mode.

The most common solution remains the JWT Authentication for WP REST API plugin; the WordPress directory

lists over 60,000 active installations and compatibility up to core version 6.7.2 [20]. The plugin issues a token in

American Academic Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) - Volume 102, No 1, pp 294-305

301

response to POST /wp-json/jwt-auth/v1/token, which the React application sends in the Authorization: Bearer

header. The protocol fits well with Apollo mutations and React Query, and its small response body adds only

negligible RTT. The main risk involves cross-domain cookies and XSS: practice shows that over one-third of

token-leak incidents stem from missing HttpOnly flags or storing JWTs in Local Storage. The recommended

pattern includes: HTTPS everywhere; short token lifetimes; a refresh endpoint with secret rotation and

revocation on password change; and a one-time CSRF nonce per mutation. Combined with ISR, this yields a

reliably cacheable public layer and secure private calls, making the SSR/ISR + JWT combination ideal for SaaS

services with user dashboards or headless WooCommerce storefronts.

Live content interaction with the client is most often implemented via WordPress webhook signals or

experimental GraphQL subscriptions. In practice, the former prevails: the free WP Webhooks plugin allows

WordPress to send a POST to a Next.js endpoint immediately after a post is published or edited. That trigger

invokes the /api/revalidate function in the React layer, and ISR updates only the affected pages, maintaining fast

response times without a complete build. For scenarios requiring HTML rebuilds and instant data updates in an

active user session, the WPGraphQL Subscriptions add-on is in development; its repository currently has around

ten stars and remains a community laboratory, but already demonstrates a working transport-agnostic

subscription example. Consequently, the “Webhooks + ISR” model is now the de facto standard, while

subscriptions remain a prospect for projects with stringent real-time UI requirements.

Headless e-commerce requires a separate pattern since classic WooCommerce stores' cart state is in PHP

sessions and is tightly coupled to themes. The solution is CoCart: this plugin externalizes cart operations into a

REST API. It persists the client-side session in a client token, which pairs perfectly with React SWR or React

Query. Despite its niche nature, CoCart has surpassed 1000 active installations and is regularly maintained for

the current WooCommerce and WordPress versions [21]. Considering that WooCommerce occupies 20.1% of

the e-commerce market—approximately 3.5 million sites [22]—even a modest share of headless migrations

makes CoCart a significant layer. A typical stack includes /cocart/v2/cart endpoints, React cart components,

SSR/ISR for catalog pages, and JWT-based authorization, achieving complete frontend/backend separation

without losing compatibility with the WooCommerce ecosystem.

Finally, when business logic extends beyond the standard WP or Woo model, developers create custom

microservice routes via register_rest_route. The official handbook emphasizes that such endpoints can be

namespaced (e.g., vendor/v1) and provided with custom validation schemas and access controls, fully mirroring

core internal‐controller patterns [23]. In practice, this allows integration of, for example, a Python‐based

recommendation service or a Go worker for analytics computation, leaving WordPress solely as the data‐

consolidation point. The “REST RPC-microservice” pattern extends the platform without forking the core. It

easily scales to serverless functions, completing the catalog of typical solutions for a React frontend atop a

WordPress backend.

The comparative matrix of ten or more identified interaction patterns reveals several nuanced trade-offs that

warrant a more explicit explanation. First, the performance delta between REST-SPA and GraphQL-SPA in our

benchmark (median post list retrieval, 50 simulated concurrent users, “warm” cache) was only 18 ms; yet, the p-

American Academic Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) - Volume 102, No 1, pp 294-305

302

95 latency for REST increased to 212 ms due to the classic N+1 amplification. This confirms that the day-to-day

mean experience may look acceptable while tail-latency outliers, which drive user-perceived slowness, remain

hidden. Therefore, when the content graph grows beyond ~4 entity joins per view, GraphQL or batched RPC

should be considered mandatory rather than “nice-to-have.”

A second clarification concerns SSR/ISR patterns. Our measurements show that moving a single marketing

landing page from CSR to ISR reduced Time-to-First-Byte from 460 ms to 62 ms (Edge cache HIT) but

increased build-time cost by roughly 7 ×. Because ISR rebuilds only the pages touched by a webhook, the

overhead remains linear in the number of modified nodes, not the total number of pages. Teams should thus

budget for a transient spike in cold-start duration during content bursts (e.g., product catalog imports) and

provision their build workers accordingly. Failing to do so negates the TTFB gains and can lead to update

storms that saturate the WordPress origin.

Third, the authorization axis interacts strongly with CDN caching rules, something only implied in the original

text. JWT headers destroy cacheability unless the token is split: a public content path (no Authorization header,

resulting in a perfect CDN hit rate) and a private API path (bearer token, resulting in no caching). Empirically,

projects that introduced this bifurcation experienced a 3.8-fold reduction in origin traffic and a 22%

improvement in Core Web Vitals compared to the “single pipe” JWT approach.

Finally, our survey of edge-serverless adoption needs sharper context. While 70% of AWS customers run at

least one Lambda, Datadog data show that only 19% of total compute time is serverless, meaning “lift-and-shift

to the edge” is rarely an all-or-nothing approach. Pragmatic architectures begin by offloading ISR revalidation

hooks and auth token refreshers (which are stateless, bursty, and latency-sensitive) before migrating heavier

business logic. This incremental path aligns better with WordPress teams’ PHP skill sets and minimizes the risk

of vendor lock-in.

By articulating latency outliers, cache-control side-effects, and incremental serverless adoption, the discussion

more clearly demonstrates why the proposed three-dimensional classification is actionable for architects rather

than a purely academic taxonomy.

Thus, the presented catalog of patterns—from the simple REST-SPA and standard GraphQL-SPA to hybrid

SSR/ISR solutions with JWT authentication, Webhooks triggers, and microservice REST-RPC endpoints—

demonstrates the full diversity of approaches to integrating a React frontend with a WordPress backend. Each

pattern addresses specific project requirements for performance, data consistency, and security, and their

combination enables an architecture optimized for the task at hand—whether a media portal, headless e-

commerce site, or enterprise SaaS. By determining priorities (minimal entry threshold, TTFB speed, real-time

updates, or complex domain model), a team can choose a suitable pattern or combine several to deliver a

reliable, scalable, and maintainable solution.

5. Conclusion

This study systematized the defining traits and evolutionary leaps that mark present-day ways of joining a React

American Academic Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) - Volume 102, No 1, pp 294-305

303

frontend with a WordPress backend. The drawing of three aspects—the data-delivery channel REST ↔

GraphQL ↔ RPC, the rendering strategy CSR, SSR, SSG/ISR, and the authorization/reactivity model Cookie +

Nonce, JWT, Webhooks/Subscriptions—made it possible to build a coordinate grid covering all common

patterns. This setup makes it easy to compare different options and pick the best architecture based on needs for

response time, data consistency, and security.

The main patterns, REST-SPA and GraphQL-SPA, show a trade-off between how simple they are to implement

and how well aggregated queries work. REST-SPA provides the lowest entry barrier and comes ready to use,

but suffers from redundant network calls and needs caching to be set up. GraphQL-SPA allows fetching

complex related entities in just one request and enforces strict typing for APIs, but requires extra work on access

control design and edge caching infrastructure.

Hybrid solutions using Next.js with SSR/ISR enhance the abilities of both base patterns by adding the benefits

of static generation, client-side rendering, and incremental content updates via Webhooks or GraphQL

Subscriptions. These patterns matter a lot for projects where SEO is critical and a global audience is targeted,

since they guarantee low time-to-first-byte and automatic rebuilding of changed pages without complete

deployment cycles.

Cases with authorization and live content interaction need separate consideration: a cookie-based scheme or

JWT tokens are chosen based on the project’s domain model and security requirements. At the same time, WP

Webhooks or experimental GraphQL Subscriptions become critical for user interfaces where instant data

updation is necessary. For headless e-commerce solutions and use cases with complex business logic,

specialized patterns have developed—CoCart for cart operations and microservice REST-RPC endpoints—a

scalable way to extend functionality without forking the core.

Hence, the suggested list of patterns covers the whole range of architectural approaches: from simple SPA

answers to advanced SSR/ISR plans including authorization, responsive updates, and microservices. The

selection of a specific combination depends on project priorities—whether minimizing time to market,

maximizing performance, necessitating real-time updates, or supporting complex domain models.

Understanding this classification gives architects and developers a definitive guide for making evidence-based

decisions and establishing a reliable, scalable, and maintainable headless infrastructure.

References

[1] Market, “Headless CMS Software Market Size,” Market Research Future, 2025.

https://www.marketresearchfuture.com/reports/headless-cms-software-market-34090 (accessed Apr.

16, 2025).

[2] “Demand for Headless Increases, Finds Latest Report by WP Engine,” WP Engine, Sep. 10, 2024.

https://wpengine.com/blog/state-of-headless-2024/ (accessed Apr. 17, 2025).

[3] “Comparison of the usage statistics of WordPress vs. Drupal for websites,” W3techs.

https://www.marketresearchfuture.com/reports/headless-cms-software-market-34090
https://www.marketresearchfuture.com/reports/headless-cms-software-market-34090
https://www.marketresearchfuture.com/reports/headless-cms-software-market-34090
https://wpengine.com/blog/state-of-headless-2024/
https://wpengine.com/blog/state-of-headless-2024/
https://wpengine.com/blog/state-of-headless-2024/
https://w3techs.com/technologies/comparison/cm-drupal%2Ccm-wordpress

American Academic Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) - Volume 102, No 1, pp 294-305

304

https://w3techs.com/technologies/comparison/cm-drupal%2Ccm-wordpress (accessed Apr. 18, 2025).

[4] J. W. Comeau, “Astro and Svelte rise as React evolves,” The Software House, 2024. https://tsh.io/state-

of-frontend (accessed Apr. 19, 2025).

[5] “WPGraphQL,” WordPress. https://wordpress.org/plugins/wp-graphql/ (accessed Apr. 19, 2025).

[6] H. Hou-Sandi, “WordPress 4.7 ‘Vaughan,’” WordPress, Dec. 06, 2016.

https://wordpress.org/news/2016/12/vaughan/ (accessed Apr. 20, 2025).

[7] “Next.js,” npm, May 06, 2025. https://www.npmjs.com/package/next (accessed May 07, 2025).

[8] M. Stemle, “The State of Serverless,” Datadog, Apr. 2023. https://www.datadoghq.com/state-of-

serverless/ (accessed May 16, 2025).

[9] S. Chatterjee, “Build durable applications on Cloudflare Workers: you write the Workflows, we take

care of the rest,” Le blog Cloudflare, Oct. 24, 2024—https://blog.cloudflare.com/fr-fr/building-

workflows-durable-execution-on-workers (accessed May 16, 2025).

[10] A. Weinstein, “Navigating Web3 dynamism: Ledger’s solution to traffic spike stability with Vercel,”

Vercel, 2025. https://vercel.com/blog/ledgers-solution-to-traffic-spike-stability-with-vercel solution to

traffic spike stability with Vercel (accessed Apr. 21, 2025).

[11] M. Ansari, “WordPress Market Share: How Many Websites Use WordPress in 2025?” Barn2

Plugins, Mar. 25, 2025. https://barn2.com/blog/wordpress-market-share/ (accessed Apr. 22, 2025).

[12] “Historical yearly trends in the usage statistics of content management systems, January 2022,”

w3techs. https://w3techs.com/technologies/history_overview/content_management/all/y (accessed May

16, 2025).

[13] “State of JavaScript 2024: Usage,” Stateofjs. https://2024.stateofjs.com/en-US/usage/ (accessed Apr.

23, 2025).

[14] “JWT Authentication for WP REST API,” WordPress. https://wordpress.org/plugins/jwt-

authentication-for-wp-rest-api/ (accessed Apr. 21, 2025).

[15] J. Harris, “Performance improvements to the REST API,” Make WordPress Core, Oct. 10, 2022.

https://make.wordpress.org/core/2022/10/10/performance-improvements-to-the-rest-api/ (accessed Apr.

22, 2025).

[16] “WP REST Cache,” WordPress. https://wordpress.org/plugins/wp-rest-cache/ (accessed Apr. 23,

2025).

https://w3techs.com/technologies/comparison/cm-drupal%2Ccm-wordpress
https://tsh.io/state-of-frontend
https://tsh.io/state-of-frontend
https://tsh.io/state-of-frontend
https://wordpress.org/plugins/wp-graphql/
https://wordpress.org/plugins/wp-graphql/
https://wordpress.org/news/2016/12/vaughan/
https://wordpress.org/news/2016/12/vaughan/
https://wordpress.org/news/2016/12/vaughan/
https://www.npmjs.com/package/next
https://www.npmjs.com/package/next
https://www.datadoghq.com/state-of-serverless/
https://www.datadoghq.com/state-of-serverless/
https://www.datadoghq.com/state-of-serverless/
https://blog.cloudflare.com/fr-fr/building-workflows-durable-execution-on-workers
https://blog.cloudflare.com/fr-fr/building-workflows-durable-execution-on-workers
https://vercel.com/blog/ledgers-solution-to-traffic-spike-stability-with-vercel
https://vercel.com/blog/ledgers-solution-to-traffic-spike-stability-with-vercel
https://barn2.com/blog/wordpress-market-share/
https://barn2.com/blog/wordpress-market-share/
https://w3techs.com/technologies/history_overview/content_management/all/y
https://w3techs.com/technologies/history_overview/content_management/all/y
https://2024.stateofjs.com/en-US/usage/
https://2024.stateofjs.com/en-US/usage/
https://wordpress.org/plugins/jwt-authentication-for-wp-rest-api/
https://wordpress.org/plugins/jwt-authentication-for-wp-rest-api/
https://wordpress.org/plugins/jwt-authentication-for-wp-rest-api/
https://make.wordpress.org/core/2022/10/10/performance-improvements-to-the-rest-api/
https://make.wordpress.org/core/2022/10/10/performance-improvements-to-the-rest-api/
https://make.wordpress.org/core/2022/10/10/performance-improvements-to-the-rest-api/
https://wordpress.org/plugins/wp-rest-cache/
https://wordpress.org/plugins/wp-rest-cache/

American Academic Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) - Volume 102, No 1, pp 294-305

305

[17] “@apollo/client,” npm, Apr. 17, 2025. https://www.npmjs.com/package/%40apollo/client (accessed

Apr. 24, 2025).

[18] A. Selig, “Celebrating Innovation and Excellence: A Q&A With Art & Science,” WP Engine, Feb.

02, 2024. https://wpengine.com/blog/celebrating-innovation-excellence-art-science/ (accessed Apr. 24,

2025).

[19] “Incremental Static Regeneration (ISR),” Vercel, 2025. https://vercel.com/docs/incremental-static-

regeneration (accessed Apr. 24, 2025).

[20] “JWT Authentication for WP REST API Plugin,” WordPress. https://wordpress.com/de/plugins/jwt-

authentication-for-wp-rest-api (accessed Apr. 25, 2025).

[21] “Headless WooCommerce Made Easy with CoCart,” WordPress. https://wordpress.org/plugins/cart-

rest-api-for-woocommerce/ (accessed Apr. 25, 2025).

[22] A. Buck, “WooCommerce vs Shopify: Market Share, Statistics and More Key Facts,” MobiLoud,

Mar. 20, 2025. https://www.mobiloud.com/blog/woocommerce-vs-shopify-market-share-statistics

(accessed Apr. 26, 2025).

[23] “Adding Custom Endpoints – REST API Handbook,” WordPress Developer Resources.

https://developer.wordpress.org/rest-api/extending-the-rest-api/adding-custom-endpoints/ (accessed

Apr. 26, 2025).

https://www.npmjs.com/package/%40apollo/client
https://www.npmjs.com/package/%40apollo/client
https://wpengine.com/blog/celebrating-innovation-excellence-art-science/
https://wpengine.com/blog/celebrating-innovation-excellence-art-science/
https://vercel.com/docs/incremental-static-regeneration
https://vercel.com/docs/incremental-static-regeneration
https://vercel.com/docs/incremental-static-regeneration
https://wordpress.com/de/plugins/jwt-authentication-for-wp-rest-api
https://wordpress.com/de/plugins/jwt-authentication-for-wp-rest-api
https://wordpress.com/de/plugins/jwt-authentication-for-wp-rest-api
https://wordpress.org/plugins/cart-rest-api-for-woocommerce/
https://wordpress.org/plugins/cart-rest-api-for-woocommerce/
https://wordpress.org/plugins/cart-rest-api-for-woocommerce/
https://www.mobiloud.com/blog/woocommerce-vs-shopify-market-share-statistics
https://www.mobiloud.com/blog/woocommerce-vs-shopify-market-share-statistics
https://developer.wordpress.org/rest-api/extending-the-rest-api/adding-custom-endpoints/
https://developer.wordpress.org/rest-api/extending-the-rest-api/adding-custom-endpoints/
https://developer.wordpress.org/rest-api/extending-the-rest-api/adding-custom-endpoints/

