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Abstract 

Seismological studies have traditionally relied on classical statistical models and manual interpretation to detect, 

analyze, and predict earthquake events. However, the growing complexity and volume of seismic data have 

necessitated more efficient and adaptive approaches. This study explores the integration of artificial intelligence 

(AI) and machine learning (ML) techniques into seismology. This study highlighted the capacity of AI and ML 

to revolutionize seismic data processing and interpretation. Majorly, the study reviewed findings on algorithms 

such as convolutional neural networks (CNNs), recurrent neural networks (RNNs), generative adversarial 

networks (GANs), support vector machines (SVMs), and unsupervised clustering methods. Also, AI systems 

such as WaveCastNet, SCALODEEP, BNGCNN, Cycle-Jnet, SASMEX, and UREDAS were reviewed in areas 

that improved accuracy in earthquake detection, earthquake predictions, and earthquake analysis.  

Keywords: Artificial Intelligence (AI); Machine Learning (ML); Deep Learning (DL); Convolutional Neural 

Network (CNN).  
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1. Introduction 

The increasing frequency and devastating impact of earthquakes worldwide have prompted the urgent need for 

advancements in seismological monitoring, prediction, and hazard mitigation. Traditional methods in 

seismology, though reliable, often face limitations in processing the ever-growing volume of seismic data and 

capturing the complex, nonlinear patterns associated with earthquake phenomena. In recent years, the 

integration of artificial intelligence (AI) and machine learning (ML) into seismological studies has emerged as a 

transformative approach, enhancing the precision, efficiency, and depth of seismic data analysis [1, 2]. 

Artificial intelligence (AI) and machine learning (ML) have significantly advanced seismological studies, 

improving earthquake detection, prediction, and analysis. Artificial intelligence (AI) and machine learning (ML) 

are increasingly transforming the field of seismology by offering new ways to detect, analyze, and interpret 

seismic events [3]. Mostly, applications of AI and ML are closely related but have different concepts. 

Traditionally, seismological studies relied on manual analysis and statistical models to detect earthquakes and 

understand seismic wave behavior [4]. The contemporary issues in seismology problems like earthquake 

detection, phase picking, earthquake early warning (EEW), ground-motion prediction, seismic tomography, and 

earthquake geodesy [4-6]. The applications of AI and ML are illustrated in Figure 1. 

 

Figure 1: Application of AI and ML in Seismology 

However, the surge in seismic data from global sensor networks has created an opportunity for AI and ML to 

provide more efficient and accurate tools for seismic analysis [7]. These technologies are now being applied in 

various aspects of seismology, including real-time earthquake detection, classification of seismic events, 
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magnitude estimation, and seismic signal denoising [6-10].  AI-based models help identify unseen seismic 

signals, extract features, and enhance early warning systems [3, 9, 11-13].  Moreover, studies have highlighted 

the role of ML in developing earthquake catalogs, analyzing seismicity patterns, and improving geodetic data 

interpretation in seismological studies [3, 14, 15].  Additionally, machine learning models help analyze 

seismicity by identifying complex patterns in seismic activity, aiding in earthquake risk assessment and hazard 

predictions [16-18] . AI-driven algorithms have also enhanced ground-motion prediction, making intensity 

forecasts more reliable for engineers designing infrastructure in earthquake-prone regions [19, 20]. In crustal 

deformation studies, AI aids in detecting geodetic signals related to both seismic and aseismic processes, 

enriching technical understanding of tectonic movements and fault dynamics [19-21].  

Seismic tomography is another technical area where AI and ML have improved. Seismic tomography is an 

imaging technique for studying the Earth's interior, and AI-assisted algorithms have enhanced in mapping of 

subsurface structures [22, 23]. These advancements, powered by AI and ML, transform seismology, making 

earthquake prediction, hazard mitigation, and risk assessment more precise and effective than ever before [24]. 

This review assesses the application of AI and ML in various areas of seismological studies and explorations. 

The literature synthesis from various articles includes AI models, ML algorithms, the area of application, 

technical contribution, and future considerations 

2.  Applications of Artificial Intelligence and Machine Learning in Seismology 

AI and ML technologies, particularly deep learning models, have shown remarkable capabilities in various 

seismological tasks, such as automatic earthquake detection, seismic phase picking, event localization, 

magnitude estimation, and ground motion prediction [8, 9, 17, 25, 26]. These models are capable of learning 

from vast datasets and uncovering subtle features that conventional techniques might overlook [27]. Recently, 

convolutional neural networks (CNNs) have been applied successfully to improve the accuracy and speed of 

seismic phase identification, while recurrent neural networks (RNNs) have demonstrated potential in forecasting 

temporal seismic patterns [17, 22, 28]. Other useful and contributing DL models include transformers, 

generative adversarial networks (GANs) [20, 29]. Additionally, deep learning models such as convolutional 

neural networks (CNNs) and recurrent neural networks (RNNs) (especially long short-term memory [LSTM]) 

are effective at identifying patterns in complex waveform data, enabling faster and more reliable identification 

of earthquakes and related phenomena [29, 30]. Generative AI models are expected to be able to contribute to 

the field of seismology that is in generating text and image data [20].  

On the other hand, the adaptability of ML models (supervised learning [SL], unsupervised learning [UL], and 

reinforcement learning [RL]) allows them to be trained across different geographical and tectonic settings, 

making them valuable tools for both global and regional seismic studies [3, 12, 16]. Moreover, ML algorithms, 

namely logistic regression, k-nearest neighbors, decision tree, random forest, AdaBoost, and gradient boosting, 

are trained using a dataset of nonlinear responses to rapidly analyze the initial seismic waves (P-waves) to 

predict the magnitude and potential impact of an earthquake (an enhancement for EEW) [12, 16, 19, 20].  

Prevalently, most researchers employ deep learning models to predict earthquakes or earthquake forecasting 



American Academic Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) - Volume 102, No  1, pp 20-38 

23 
 

based on either seismic wave characteristics or seismic activity data [19]. Also, AI models predict earthquake 

magnitude and depth using either logistic model tree and Bayesian network, which have the highest sensitivity, 

accuracy, and F-measure efficiency [19].  

The increasing availability of open-source seismic datasets and computational resources has further accelerated 

research in this domain [14]. Despite these advancements, several challenges remain, such as the interpretability 

of AI-driven models, data quality variability, and the need for standardized evaluation benchmarks. Nonetheless, 

the integration of AI and ML into seismology marks a significant leap toward more accurate, efficient, and 

automated seismic monitoring and risk mitigation. 

Hence, various contributions from published articles are evaluated with respect to their area of study, AI model, 

or ML model applied, and future prospects. The recent publication on the application of AI and ML is presented 

as follows. 

Ge and colleagues established an AI-based prediction of seismic time-history responses of RC frame structures 

based on structural parameters [31]. They designed an end-to-end framework for intelligent seismic response 

prediction (ISRPnet) that comprises a structural parameter module for discretizing reinforced concrete frame 

structures into a series of static features and an encoder-decoder architecture for encoding seismic loads and 

autoregressively predicting seismic responses [31]. The model was trained on a data set of 16,544 cases 

generated through validated fibre-based finite element models, and it achieved an efficient performance on both 

frequent and rare earthquakes [31]. ISRPnet was reported to be more precise, faster, and efficient, especially for 

temporal responses for frequent earthquakes [31]. The predictions for the peak displacement for rare 

earthquakes were reported to be more accurate as well. In general, ISRPnet demonstrated superiority over 

traditional statistical models in the area of physical loss, “gated recurrent units over long short-term memory”, 

generalization, and extrapolation abilities of the model [31]. 

Reichstein and co-researchers investigated the potential of integrated artificial intelligence (AI) frameworks in 

advancing early warning systems for complex climate-related risks, including extreme weather events, wildfires, 

and geophysical hazards such as earthquakes. The methodology employed involves the integration of various AI 

techniques, which include neural networks (CNN, RNN, GAN, etc.), causality-based learning (RL, structural 

causal models [SCMs], counterfactual learning, debiased ML, etc.), and hybrid physics-informed models 

(Physics-informed neural networks [PINNs], with large-scale Earth system datasets encompassing satellite 

observations, climate reanalyses, and historical event records. They established that integrated AI systems 

improve forecasting accuracy, transparency, and actionable relevance of predictions, which is critical for risk 

communication and policy implementation in seismology [20].  

Kubo and colleagues conducted a comprehensive overview of the recent progress made in the application of 

machine learning (ML) techniques to earthquake seismology. They highlighted how ML models are 

transforming traditional methods of seismic data analysis [14]. Their study is grounded in a detailed literature 

review that synthesizes a wide range of studies, categorizing ML applications into core areas such as earthquake 

detection, seismic phase picking, magnitude and location estimation, and tomographic imaging. The ML models 
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studied were convolutional neural networks (CNNs) and recurrent neural networks (RNNs), which have proven 

effective in handling complex, high-dimensional seismic data. They reported that ML models significantly 

outperform traditional seismological techniques in terms of speed, accuracy, and scalability [14]. Kubo and his 

colleagues reported that ML has facilitated the automation of real-time seismic monitoring, reducing reliance on 

manual intervention and improving response times in early warning systems.  

Jia and Zhou explored the growing integration of machine learning (ML) technologies in the field of 

seismology, providing a thematic and methodological analysis of current trends, achievements, and challenges 

[32]. The research was a comparative analysis that expressed that ML models, particularly deep learning (DL) 

techniques, significantly improve the accuracy and automation of tasks like phase picking, earthquake 

cataloging, and fault detection. They established that CNN-based models outperformed traditional template 

matching techniques in detecting low-magnitude seismic events, while ML-driven regression models achieved 

superior results in estimating earthquake magnitudes and epicentral locations [32]. Furthermore, they 

emphasized how hybrid models that integrate domain knowledge with data-driven algorithms can enhance both 

performance and interpretability.  

Satish and his colleagues developed and evaluated an AI-driven predictive model for earthquake forecasting by 

leveraging big data analytics to enhance the accuracy and reliability of seismic event predictions [33]. They 

utilized a range of machine learning (ML) and deep learning techniques, such as decision trees, support vector 

machines (SVMs), and long short-term memory (LSTM) networks, to model temporal and spatial patterns of 

seismic activity. Also, several methods that involved the pre-processing of large seismic datasets, feature 

engineering, model training and validation, and performance evaluation using metrics like root mean square 

error (RMSE), accuracy, and area under the curve (AUC) were applied [33]. They reported that LSTM-based 

models demonstrated superior performance in capturing temporal dependencies and forecasting seismic trends. 

Additionally, the outcome of AI models indicated that, when trained on large and diverse datasets, they can 

identify non-linear correlations and precursors that are often missed by traditional statistical models, thereby 

improving forecasting potential [33].  

Lara investigated the application of artificial intelligence (AI) techniques in the detection of seismic signals, 

with a specific focus on the enhancement of real-time monitoring and signal classification accuracy [34]. The 

benchmark established was a combination of supervised learning (SL) approaches and neural network (NN) 

architectures, which was convolutional neural networks (CNNs). The research examines model training on 

labeled seismic datasets and tests their performance across different geographic regions, signal types, and noise 

types. Lara reported that AI models, especially CNNs, consistently outperform traditional rule-based or 

thresholding techniques, particularly in low signal-to-noise ratio environments [34].  

Ibrahim and Al-Bander established an effective framework that integrates geospatial analysis, ML, and 

statistical modeling to analyze global earthquake patterns and improve seismic risk assessment [24]. The 

researchers applied clustering techniques (such as K-means and Density-Based Spatial Clustering of 

Applications with Noise [DBSCAN]) to identify spatiotemporal patterns, followed by the use of supervised 

learning algorithms like support vector machines (SVM) and decision trees to classify risk levels and predict 
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future seismic events [24]. Moreover, geographic information systems (GIS) were employed to visualize seismic 

zones and assess regional vulnerability by overlaying seismic activity with population density and infrastructure 

data. They reported that the integrated model significantly improves the accuracy of seismic risk classification 

and highlights high-risk zones that were underrepresented in traditional models [24]. The framework also 

reveals new insights into global seismic trends, such as emergent clusters of activity in previously overlooked 

areas.  

Marano and colleagues conducted an extensive study on the application of generative adversarial networks 

(GANs) in earthquake-related engineering disciplines to highlight the growing relevance of synthetic data 

generation in seismic modelling, structural health monitoring, and earthquake damage simulation [29]. The 

study used a systematic review to analyze over 150 publications and technical reports that detail the deployment 

of GANs across various subfields such as seismic wave simulation, structural response modeling, image-based 

damage classification, and synthetic ground motion generation [29]. The authors highlighted that GANs are 

particularly effective in generating high-fidelity synthetic data to train deep learning models, thereby addressing 

data imbalance and improving generalizability in earthquake engineering applications [29]. Additionally, the 

results indicated that GANs have significantly advanced several earthquake engineering applications by 

enabling realistic simulations of rare seismic events and improving the robustness of AI-based structural 

assessments. However, Marani and his colleagues established that GAN-generated data may introduce biases or 

artifacts that can mislead model interpretation if not properly validated [29].  

Lyu and colleagues introduced WaveCastNet, a novel artificial intelligence framework designed to forecast 

seismic wavefields in real time, aimed at enhancing the speed and accuracy of earthquake early warning (EEW) 

systems [35]. The innovative tech was driven by the limitations of conventional numerical solvers, which, while 

accurate, are computationally expensive and often too slow for practical early warning applications. The AI tech 

was based on a physics-guided deep learning architecture that leverages past seismic wavefield recordings to 

predict future ground motions across a spatial grid [35]. The model is trained and validated using high-

resolution synthetic simulations generated from 3D finite-difference methods, which provide diverse earthquake 

scenarios for robust generalization [35]. The researchers established that WavecastNet can forecast wavefields 

with high fidelity several seconds into the future, well within the decision-making window needed for early 

warnings. Furthermore, the comparison with the traditional numerical solvers, WaveCastNet, offers significantly 

faster inference speeds without compromising prediction quality [35].  

Jia and Ye carried out a comprehensive review on the application of deep learning techniques in earthquake 

disaster assessment, offering a structured framework that categorizes research progress across key elements 

[17].  The study covered over 100 recent publications and case studies that involve the use of deep learning in 

various stages of earthquake disaster management, ranging from rapid damage detection and impact mapping to 

long-term recovery assessment. They identify the most commonly used data types (e.g., satellite imagery, 

unmanned aerial vehicle (UAV) data, and crowdsourced information), deep learning architectures (such as 

convolutional neural networks [CNNs], recurrent neural networks [RNNs], and generative adversarial networks 

[GANs]), and assessment objectives (e.g., building collapse detection, infrastructure damage classification, and 

casualty estimation) [17]. Jia and Ye highlighted that while deep learning has significantly improved the speed 
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and granularity of post-earthquake assessments, key limitations persist, particularly concerning data availability, 

model transferability across regions, and the lack of standardized benchmarks [17].  

Mousavi and Beroza demonstrated the revolutionary impact of deep learning in the field of seismology as an 

alternative in signal processing and modelling techniques [10].  They presented a conceptual and application-

based overview of deep-learning methods, particularly CNNs, RNNs, and transformer-based architectures, being 

adopted to address fundamental challenges in seismic data analysis. Mousavi and Beroza stated that the DL 

architectures mentioned above have achieved state-of-the-art performance in real-time earthquake detection, 

seismic phase picking, microseismicity detection, and ground motion forecasting. Additionally, the 

implementation of deep networks has enhanced earthquake early warning systems by reducing detection latency 

and increasing robustness to noise [10].  

Aden-Antoniów and his colleagues assessed the challenges in seismology in the area of declustering earthquake 

catalogues by introducing a novel machine learning approach based on random forest algorithms [6]. The study 

focused on distinguishing between the background seismicity from aftershocks and other clustered events using 

a data-driven, probabilistic model that is more flexible and adaptable than traditional statistical methods, such as 

the Reasenberg or Gardner-Knopoff algorithms [6]. The methodology centers on training a supervised random 

forest classifier on synthetic earthquake catalogs, which simulate a wide range of clustering behaviors and 

tectonic conditions. They reported that the random forest model can effectively separate clustered events from 

background seismicity with greater precision than conventional rule-based techniques [6]. Importantly, the 

model provides probabilistic scores rather than binary classifications, allowing for more nuanced interpretations.  

Bilal and his colleagues introduced an innovative deep learning framework for early earthquake detection using 

a Batch Normalization Graph Convolutional Neural Network (BNGCNN) to improve the accuracy and speed of 

seismic event identification [36]. The benchmark was designed to convert seismic waveform data into graph 

representations, where nodes correspond to seismic stations and edges encode spatial or functional proximity 

[36]. The BNGCNN was trained on labeled seismic data, using features derived from the waveform’s temporal 

dynamics. Moreover, batch normalization layers were employed to stabilize learning and accelerate 

convergence. The model's performance is benchmarked against existing deep learning methods using metrics 

such as accuracy, precision, recall, and F1-score. The BNGCNN outperformed the traditional CNNs and vanilla 

graph convolutional networks, particularly in noisy environments and when processing large-scale sensor data 

[36].  

Saad and his colleagues introduced Scalodeep, a scalable and highly generalized deep learning framework 

designed to enhance real-time earthquake detection across diverse seismic environments [9]. Scalodeep is based 

on a convolutional neural network (CNN) architecture trained on a large, heterogeneous dataset encompassing 

various geophysical settings, waveform types, and noise conditions [9]. Scalodeep was trained using over 5 

million waveform samples using supervised learning, with an emphasis on augmenting data diversity to improve 

generalization.  Scalodeep achieved state-of-the-art accuracy, sensitivity, and low false detection rates across 

multiple seismic networks. Also, it outperformed both traditional detection algorithms and earlier deep learning 

models [9]. Crucially, the model was reported to be computationally efficient, supporting real-time seismic 
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monitoring applications with low-latency responses.  

Ma and Mei performed an in-depth and systematic review of the role of deep learning in geological hazard 

analysis, encompassing earthquake prediction, landslide detection, and hazard risk mapping [30]. The 

methodology was based on a structured review of over 150 publications covering four main dimensions: data 

sources, deep learning models, applications, and existing bottlenecks. The study demonstrated that deep learning 

models have significantly outperformed traditional statistical and machine learning methods in terms of 

predictive accuracy and scalability, especially when dealing with high-dimensional and unstructured geospatial 

datasets [30].  Ma and Mei emphasized on earthquakes, indicating that DL has been particularly impactful in 

early warning systems, seismic signal classification, and ground motion prediction. However, the authors 

caution that issues such as data imbalance, lack of standardized benchmarks, and the "black-box" nature of deep 

learning still pose barriers to widespread operational deployment.  

Mousavi and Beroza addressed the limitations of traditional methods for earthquake magnitude estimation by 

introducing a machine learning-based framework designed to improve speed and accuracy [10]. They 

specifically focused on leveraging DL techniques to estimate earthquake magnitudes directly from raw seismic 

waveforms, bypassing the reliance on empirical amplitude-based relationships that often underperform in 

complex seismic environments [10]. Mousavi and Beroza established that CNN architecture has the capability 

of learning discriminative features from waveform segments to predict magnitudes with higher consistency. The 

results demonstrate that the proposed machine learning model outperforms traditional magnitude estimation 

methods, particularly in cases where signal quality is limited or data is incomplete.  

Min and his colleagues introduced an innovative method to provide noise removal from seismic data by 

adopting a deep denoising autoencoder (DDAE), which is a convolutional autoencoder (CAE) integrated with a 

GAN framework (DDAE-GAN) in a three-step procedure [37]. The model was designed to incorporate a 

generative adversarial network (GAN) to generate a large number of paired clean-noisy data using real noise 

[37]. Additionally, a deep denoising autoencoder (DDAE) was pre-trained using GAN-generated data, and a 

transfer learning technique was used to train the DDAE further on a few field datasets. They reported that the 

method was able to suppress seismic data noise well [37]. 
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Figure 2: Area of Applications of AI and ML in Seismology 

 

 

Figure 3: Specific Application of AI and ML in Seismology 
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Table 1: List of Frameworks and Models of AI and ML in Seismology 

S/N Framework / Model Type Application of ML & AI 

1 CNN ML Seismic phase identification[17, 22, 26, 38, 39], 

real-time earthquake detection and identification 

[29, 30], estimation of earthquake magnitudes 

&EEW [17, 29, 32, 40], seismic phase picking, 

and ground motion forecasting [26, 30] 

2 RNN ML Forecasting temporal seismic patterns [17, 22, 

28], earthquake detection [20, 29, 30], seismic 

phase picking, microseismicity detection [26] 

3 GAN ML Earthquake damage simulation [29, 41], seismic 

denoising [17, 32], earthquake classification [24]  

4 ISRPnet AI Seismic prediction [31] 

5 SCMs AI Early earthquake warning system [20] 

6 PINNs ML Early earthquake warning system[20], earthquake 

detection [14] 

7 SVMs AI Earthquake forecasting, earthquake detection, 

phase picking, EEW, ground-motion prediction, 

seismic tomography, and earthquake geodesy.  [3, 

12, 42] 

8 WaveCastNet AI EEW, ground-motion prediction [13, 35] 

9 SCALODEEP AI Real-time seismic monitoring and earthquake 

detection [43] 

10 BNGCNN AI Early earthquake detection [36] 

11 Cycle-Jnet AI Identification of geological features [44]  

12 UREDAS AI Earthquake magnitude estimation [45]. 

13 SASMEX ML Early earthquake detection and EEW[46]. 

14 CycleGAN  Artificially decimated images and earthquake 

analysis [47] 

15 SAGAN  Earthquake analysis [48] 

16 ANN ML Earthquake detection, phase picking, EEW, 

ground-motion prediction, seismic tomography, 

and earthquake geodesy.  [3, 42] 

17 Random Forest ML Earthquake classification [49] 

18 DeepShak ML Earthquake prediction [50] 

19 Autoencoder ML Seismic denoising [51] 

20 DDAE ML Seismic denoising [37] 

 



American Academic Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) - Volume 102, No  1, pp 20-38 

30 
 

3. Discussion on Future Applications of AI and ML 

So far, AI and ML models have demonstrated much potential in seismological enhancement. Also, Al and ML 

have influenced transformation and optimization in areas like early warning systems, tectonic movement, and 

fault dynamics. The prospect of improving and establishing systems with the capacity to learn from high-

dimensional data, adapt across spatial-temporal scales, and bridge empirical data with domain theory is still 

paramount. Challenges persist in earthquake precise prediction, ground motion prediction, real-time earthquake 

monitoring, limitations in seismic tomography, and data imbalance & noise. Jia and Ye [17] established that 

deep learning has significantly improved the speed and granularity of post-earthquake assessments, even though 

key limitations persist, particularly concerning data availability, model transferability across regions, and the 

lack of standardized benchmarks. Ma and Mei [30] established that due to the complexity of deep learning and 

the uncertainty of geological hazards, the application of deep learning in geological hazard analysis poses 

numerous challenges while generating broader opportunities. The issues are data imbalance, lack of 

standardized benchmarks, and the "black-box" nature of deep learning still pose barriers to widespread 

operational deployment. Although, deep learning models have significantly outperformed traditional statistical 

and machine learning methods in terms of predictive accuracy and scalability, especially when dealing with 

high-dimensional and unstructured geospatial datasets [30]. Researching these challenges is essential due to 

challenges that persist, particularly in ensuring model robustness, addressing data gaps in low-income regions, 

and maintaining ethical standards in algorithm design and deployment.  

Based on the persistent challenges, Reichstein and his colleagues recommended expanding interdisciplinary 

collaborations to co-design AI models with stakeholders, especially by embedding uncertainty quantification 

within predictive systems and investing in open data infrastructures that support inclusive and global risk 

assessment [20].  Kubo and his colleagues emphasized that deep learning, especially CNN and RNN, has a 

promising influence in resolving these challenges [14]. Kubo and his colleagues established that DL models 

have demonstrated outstanding performance and have greatly improved the accuracy of automatic processing, 

especially in ground-motion data modeling, analysis of geodetic data related to crustal deformation, and 

detection of geodetic signals caused by seismic/aseismic phenomena [14].  Bilal and his colleagues established 

that the experimental findings using DL indicated that the batch normalization with graph convolutional neural 

networks (BNGCNN) surpasses existing models, suggesting its potential utility in real-time earthquake 

monitoring systems [36].  

Mousavi and Beroza [26] validated that deep-learning models systematically outperform classical characteristic 

function-based models, especially with much lower computational cost and no need for template events. Also, 

deep-learning models generalize well to other regions or data types beyond their training data, and compared 

with the classical methods. Deep-learning models perform better in conditions with a lower signal-to-noise ratio 

(SNR). Mousavi and Beroza [26] futurized that DNNs will be capable of performing multiple seismic data 

analyses, notwithstanding issues of interpretability and brittleness Liu, and his colleagues [41] stated using DL 

accelerated prestack time migration by more than 100 times, and Kaur, and his colleagues  [38] reported that DL 

improved both computational efficiency and image resolution in least-squares migration by estimating the 

inverse Hessian operator when a cyclic GAN is used.  
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Additionally, Kaur and his colleagues established that the feature-learning and dimensionality-reduction abilities 

of CNNs are well suited for clustering of seismic response in terms of geological properties and outperform 

machine-learning approaches for seismic facies mapping based on hand-engineered features, a fact that was 

similarly established by Qian and his colleagues in 2018 [52, 53]. For noise issues in seismic data, Yi and his 

colleagues and Feng and his colleagues stated that an effective approach to meet this challenge is to create 

semisynthetic data in which clean synthetic signals are combined with manually picked noise from the field data 

[54, 55]. Xu, and his colleagues [56] proposed an automatic P-wave onset time picking method for mining-

induced microseismic data based on a long short-term memory deep neural network. The proposed method will 

accurately extract data features of micro seismic waveforms and further improve the P-onset picking 

performance. Moreover, Xie, and his colleagues [57] exploited GAN to perform fast noise removal on onshore 

land seismic data, attempting to provide a new technology for real-time processing. 

In contrast to DL, transfer learning is another potential solution that has been specified among researchers. 

Kubo, and his colleagues [14] stated that effective approaches to address earthquake seismology problems 

include data augmentation, simultaneous use of domain knowledge, and transfer learning. They went further, 

stating that applying the latest techniques, such as PINNs, neural operators, Bayesian neural network (BNN), 

and explainable artificial intelligence (XAI), can address challenges that arise from the black-box nature of DL.  

Jia and Zhou [58] highlighted the limitations of ML models and that future works should focus on enhancing 

model accuracy and generalizability, the development of real-time applications in seismology, and the 

exploration of the physical mechanisms underlying earthquakes through machine learning methodologies. Zhu 

and his colleagues suggested that a potential approach to address this issue (one of the challenges-  earthquake 

monitoring) is the earthquake catalog development in aspects like waveform search processes, vast ML 

modelling, and optimization of complex systems using an end-to-end approach architecture (a neural network) 

[59].  In support of Zhu and his colleagues report, Woollam and his colleaguesand Tan and his colleagues also 

established that the development of an earthquake catalog is essential, which will contribute to resolving these 

challenges [60, 61]. Additionally, seismic datasets for retraining should ideally be publicly accessible and easily 

applicable for future model development, like the Seisbench toolbox [60]. Wang and his colleagues also 

supported futuristic influence of ML stating  that “small earthquakes contain valuable predictive information”, 

underscoring the promise of machine learning in improving earthquake prediction accuracy [62]. 

For AI, Johora, and his colleagues [63] established that through the incorporation of seismic wave velocity data, 

the ANN models exhibit enhanced predictability compared to traditional multilinear regression models, thereby 

demonstrating the potential for increased efficiency and accuracy in geotechnical evaluations. Satish, and his 

colleagues [33] established that various AI models are centered on deep learning and work the “black boxes” 

given that predictions are minus pure descriptions of them inwards at those ends.  

Artificial Intelligence (AI) provides a promising alternative approach for modeling ground motion propagation 

and the black-box issue because deep neural networks are well-suited to model the nontrivial spatiotemporal 

properties of ground motions [64]. Reichstein, and his colleagues [65] highlighted that AI has the potential to 

transform early warning systems into a sophisticated and enhanced system using high-dimensional data, adapted 
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from spatial-temporal scales, and bridge empirical data. Additionally, Lyu, and his colleagues [35] highlighted 

that AI-enabled wavefield predictions have the potential to complement existing EEW techniques, particularly 

in high-risk seismic regions where every second matters. 

5. Conclusion 

The application of AI and ML in seismological studies has made potential impacts and transformative 

advancements in the field of geoscience and engineering. These intelligent systems have demonstrated 

significant capabilities in enhancing the detection, classification, and prediction of seismic events. Moreover, AI 

and ML have outperformed traditional seismological approaches in areas of seismic phase picking, seismic 

denoising, ground motion predictions, and seismic magnitude estimation. Another enhancement of AI and ML 

models is their capability to process and analyze massive volumes of seismic data in real time, identify hidden 

patterns, and learn complex relationships that are relatively complex to human experts. 

From enhancing early warning systems to automating earthquake location and magnitude estimation, AI-driven 

techniques such as deep neural networks (CNN, RNN, GAN, etc.), support vector machines, and unsupervised 

clustering have proven to be more efficient, accurate, and adaptive. Furthermore, AI and ML have enabled the 

integration of various data sources, such as satellite imagery, GPS readings, and environmental sensors, to 

provide a holistic and multidimensional understanding of seismic activities. 

However, despite their remarkable potential, the application of AI and ML in seismology is not without 

challenges. Issues such as black-box, model interpretability, data quality, lack of labeled training datasets, and 

the need for domain-specific tuning remain key hurdles. To address these, continued collaboration between 

seismologists, data scientists, and geotechnical professionals is paramount. 

In conclusion, AI and ML are substantial tools that revolutionize seismological research and disaster 

management. As technology continues to evolve, the integration of AI and ML will become more efficient in 

mitigating earthquake risks, protecting infrastructure, and ultimately saving lives. 

6. List of Abbreviations 

AI Artificial intelligence  

ML Machine learning 

EEW Earthquake early warning 

CNN Convolutional Neural Networks 

RNN Recurrent neural networks 

DL Deep learning 

LSTM Long short-term memory 

SL Supervised learning 

UL Unsupervised learning 

RL Reinforcing Learning 
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ISRPnet Intelligent seismic response prediction 

GAN Generative Adversarial network 

SCMs Structural causal models 

PINNs Physics-informed neural networks 

SVMs Support vector machines 

AUC Area under the curve 

RMSE Root means square error 

NN Neural Network 

DBSCAN Density-Based Spatial Clustering of Applications with Noise 

GIS Geographic information systems 

UAV Unmanned area vehicle 

BNGCNN Batch Normalization Graph Convolutional Neural Network 

XAI Explainable Artificial Intelligence  

BNN Bayesian Neural Network 
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