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Abstract 

This article explores the integration of WebAssembly into high-performance web applications as a response to 

the increasing demands for computational power, scalability, and security in the rapidly evolving landscape of 

web technologies and the Internet of Things (IoT). The study substantiates the relevance of transitioning from 

traditional JavaScript to WebAssembly, which allows code written in C/C++ or Rust to be compiled into a 

compact binary format, delivering near-native execution speed. The article analyzes the architecture of 

WebAssembly, its advantages, and its integration potential with other technologies, such as WebGPU for 

accelerated parallel computations. Special attention is given to the current limitations of WebAssembly (e.g., the 

lack of native garbage collection, debugging difficulties, and challenges in cross-language integration) as well as 

its promising development directions, including the standardization of WASI and enhancements through 

multithreading and SIMD support. In comparative experiments on 1024 × 1024 matrix multiplication, the 

SIMD‑enabled WebAssembly module with block‑optimized memory access outperformed the optimized 

JavaScript implementation by 1.64 × and delivered a 4 × improvement over the unvectorized Wasm build, while 

offloading computations to WebGPU achieved an ~50‑fold reduction in execution time for both 

JavaScript+WebGPU and Wasm+WebGPU configurations. These results substantiate that the integration of 

WebAssembly and WebGPU brings near‑native and GPU‑accelerated performance to browser‑based 

applications, laying a quantitatively validated foundation for high‑load web and IoT systems.The paper 

demonstrates a way to accelerate client data processing using a combination of Web Assembly and Web GPU. 

The results of a comparative experiment are presented. This article will be of interest to professionals in web 

development and systems architecture who aim to optimize computational workflows and maximize the 

performance of modern web applications via WebAssembly. Additionally, the material provides valuable 

insights for researchers engaged in the analysis and development of advanced methodological approaches to 

optimizing high-load information systems. 
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1. Introduction 

Web applications increasingly face the need to handle computationally intensive tasks in real time—a challenge 

that traditional JavaScript-based approaches often fail to meet efficiently, resulting in latency and elevated 

power consumption. In this context, WebAssembly (hereafter Wasm) emerges as a relevant solution. It allows 

code written in C/C++ or Rust to be compiled into a compact binary format that delivers near-native execution 

speed and ensures high security through sandbox isolation [1]. Furthermore, the integration of WebAssembly 

with complementary technologies such as WebGPU opens up new opportunities for implementing parallel 

computations and accelerating AI-related tasks, highlighting the importance of this subject. 

The goal of this study is to analyze the specific features of WebAssembly integration into high-performance 

web applications aimed at accelerating computationally intensive tasks and optimizing system resource usage. 

The novelty of this study lies in the introduction of a new method for running neural network inference directly 

in the browser using WebGPU in conjunction with WebAssembly, without requiring any server-side processing. 

The working hypothesis is that employing WebAssembly in performance-critical web applications can reduce 

task execution time and resource consumption when compared to conventional JavaScript-only solutions. 

Moreover, the synergy between WebAssembly and technologies like WebGPU can deliver additional 

computational acceleration, which is particularly relevant for applications handling large datasets or executing 

parallel operations. 

2. Materials and methods 

In recent years, the integration of WebAssembly into high-performance web applications has become an active 

research topic, reflected in a wide array of publications sharing both thematic and methodological 

commonalities. The literature review includes 10 publications from the years 2021 to 2025, selected based on 

the keywords WebAssembly, WASI, and WebGPU in Google Scholar. A number of studies focused on 

improving web application efficiency emphasize optimizing computational processes and integrating advanced 

graphics technologies. For instance, Odume B. W., Okodugha P. E., and Madu I. [1] examine the synergistic 

potential of combining WebAssembly and WebGPU for deploying AI models, showing that this combination 

can significantly reduce response times and boost overall application performance. Similarly, Kyriakou K. I. D. 

and Tselikas N. D. [4] explore the use of Rust alongside WebAssembly to complement JavaScript in high-

performance Node.js and web applications, thereby improving scalability and reducing latency. Wang W. [8], in 

a comprehensive review, examines trends in WebAssembly adoption within web applications, identifies current 

limitations, and proposes future development directions for the technology. 

Another segment of research focuses on the application of WebAssembly in Internet of Things (IoT) devices 

and embedded systems. A review by Ray P. P. [2] spans a broad range of topics—from toolchains to challenges 
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and prospects—highlighting WebAssembly's potential for enabling energy efficiency and reliability in 

computational processes. Concurrently, Kim J. and his colleagues [3] present a hardware-oriented approach, 

designing a WebAssembly-based accelerator for embedded systems, which enhances data processing times and 

reduces CPU load. 

Security is another prominent area of concern in the literature on WebAssembly. The review by Perrone G. and 

Romano S. P. [5] provides a structured overview of existing threats and mitigation strategies, identifying both 

the strengths of Wasm in isolating code and the vulnerabilities tied to cross-platform integration. Further 

comparative analysis by Dejaeghere J. and his colleagues [9] contrasts the security of Wasm with that of eBPF, 

offering insights into trade-offs between performance and protection. 

Considerable attention has also been paid to the potential of WebAssembly in edge computing contexts. Hoque 

M. N. and Harras K. A. [10] examine the technology’s suitability for distributed environments, emphasizing the 

benefits of reduced latency through local processing, while also noting challenges such as resource management 

and data migration. Complementary studies of existing Wasm runtimes, such as the one by Zhang Y. and his 

colleagues [7], offer a foundational understanding of the current infrastructure for executing WebAssembly 

code, which is crucial for the development of future applications. In addition, Ramirez C. E., Sermet Y., and 

Demir I. [6] describe how WebAssembly can be used to create open-source libraries for hydrology and 

environmental sciences, demonstrating the technology’s interdisciplinary potential. 

The analysis of existing research provided the essential groundwork for this article. It demonstrated that 

WebAssembly’s high performance does not arise automatically from its use but instead depends on deep low-

level optimizations—such as SIMD instruction sets and manual memory management—especially when 

benchmarked against state-of-the-art JavaScript engines. Employing WebGPU for parallel computations has 

shown considerable potential for acceleration, often narrowing the performance gap between CPU-driven 

workloads in JavaScript and those in WebAssembly. Additionally, the need for rigorous Wasm optimization on 

the CPU highlights challenges for its deployment in resource-constrained contexts—such as IoT devices—

absent dedicated hardware or runtime support. 

Despite this extensive research foundation, notable contradictions remain. On the one hand, much attention has 

focused on boosting performance and optimizing computation. On the other, critical concerns around security 

and resource governance have not been explored in sufficient depth. Cross-platform compatibility issues and the 

nuances of tuning WebAssembly on limited-capacity edge devices are under-represented in the literature. 

Addressing these gaps will require comprehensive empirical studies to establish unified standards and 

methodologies that ensure both peak efficiency and robust protection in contemporary web applications. 

3. Results 

WebAssembly (Wasm) is a technology designed to overcome the limitations of traditional JavaScript in 

executing computationally intensive tasks within web applications. It is a binary format that enables code 

written in low-level languages such as C, C++, or Rust to be compiled into compact executable modules capable 
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of running at near-native speed [1]. The development of the Wasm standard is a response to the growing 

demands for performance, security, and portability in modern web applications, and its backing by industry 

leaders such as Google, Mozilla, Microsoft, and Apple underscores its strategic importance [2, 3]. 

Originally conceived as a solution to JavaScript's interpretability and limited performance in data-heavy 

environments, WebAssembly features a stack-based architecture for storing intermediate computational values, 

which significantly optimizes code execution. Wasm supports both ahead-of-time (AOT) and just-in-time (JIT) 

compilation, allowing the execution environment to adapt dynamically to application conditions [5]. Its strict 

sandboxing model ensures that each module runs in an isolated environment, reducing the risk of unauthorized 

access to system resources and enhancing the overall security of web applications [2]. 

The main advantages of WebAssembly include: 

● High Performance: Through precompilation into binary format, Wasm modules execute at near-native 

speed, which is critical for performance-sensitive tasks such as image processing, simulations, and 

machine learning. 

● Security: The isolated sandbox environment enforces strict resource access controls, mitigating 

vulnerabilities typically associated with interpreted languages. 

● Portability and Cross-Platform Compatibility: A single binary module can run on any device that 

supports a WebAssembly runtime—from servers to resource-constrained environments, including IoT 

devices [2]. 

● Integration with JavaScript: The WebAssembly JavaScript API allows seamless integration of modules 

into existing web applications, facilitating communication between high-performance code and 

application logic implemented in JavaScript [3]. 

For a deeper understanding of Wasm’s characteristics, Table 1 summarizes its key features: 

Table 1: WebAssembly Features [1–3] 

Feature Description Advantages 

Binary Format Compact executable code that loads and decodes quickly Fast load times and reduced 

memory usage 

Sandbox 

Environment 

Isolated execution context preventing unauthorized access 

to system resources 

Enhanced security through 

access restriction 

Compilation 

Model 

Supports both AOT and JIT compilation for optimized 

execution 

Adaptive performance and speed 

JavaScript 

Integration 

API suite for interaction between Wasm modules and 

JavaScript code 

Easy integration and functional 

extensibility 
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In summary, WebAssembly is a foundational technology that significantly enhances the efficiency and security 

of web applications through its unique architecture, optimized binary format, and flexible integration with 

modern technologies such as WebGPU for parallel computation. 

Modern web applications increasingly demand high performance, scalability, and security. In this context, 

integrating WebAssembly (Wasm) has emerged as a critical solution, allowing developers to offload compute-

intensive operations from JavaScript to an execution environment with near-native performance [1].  Core 

integration strategies include selecting appropriate programming languages for performance-critical code 

sections, optimizing the compilation process, organizing interoperability between Wasm modules and 

JavaScript, and leveraging complementary technologies like WebGPU to accelerate parallel computing tasks in 

AI-driven applications. The modern WebAssembly build and debugging cycle relies on a toolchain centered 

around LLVM-based compilers and auxiliary utilities for processing binary modules. The most commonly used 

compilers include Clang, Rust (via cargo and wasm-pack), and the AssemblyScript compiler. For optimization 

and transformation, tools like Binaryen and WABT are employed. Linking is handled through wasm-ldor wasm-

bindgen, with flags such as -g and --dwarf-version=5 preserving extended .debug_* DWARF sections, while 

options like --name-section or -fdebug-prefix-map ensure correct path mappings for symbolic tooling. 

When compiling C/C++ sources with Emscripten, additional flags like -gsource-map and --source-map-base=… 

are used. The linker then annotates original source lines with a "wasm://" prefix and generates a supplementary 

JSON source map, which browsers refer to for debugging. 

In the Rust ecosystem, the process is similar: the command cargo build --target wasm32-unknown-unknown -

gproduces a module with address-to-line mappings. Then, the optimizer wasm-opt -g --dwarf --debuginfo 

retains essential debug information, while wasm-bindgen --keep-debug --no-demangle exports it to JavaScript. 

For low-level diagnostics, tools such as wasm-objdump -x (for section inspection), wasm2wat/wasm-decompile 

(annotated disassembly with line numbers), and llvm-symbolizer (for resolving function names from DWARF 

addresses) are used. 

Chrome DevTools (version 89+) supports both DWARF sections and standard source maps. Upon module load, 

the debugger builds a reverse mapping of “address → file:line”, allowing developers to set breakpoints, inspect 

call stacks, view local variables, and use the Memory Inspector. Native Wasm stack traces (e.g., throw new 

Error()) are processed via an embedded symbolizer, converting entries like wasm-function[123]:0x45a into 

meaningful Rust or C++ symbols. 

Visual Studio Code integrates Wasm debugging through the js-debug-adapter or the vscode-wasm extension. In 

launch.json, configurations with "type": "pwa-chrome" or "type": "pwa-node" include the 

sourceMapPathOverrides parameter for redirecting source maps locally. For remote debugging in Node-WASI, 

flags like --enable-diagnostics are used along with port 9229 for inspection. 

Error localization is further enhanced using traditional practices: builds with AddressSanitizer/UBSan (via -

fsanitize=… in Clang 15+, supported in Wasm), enabling --profiling-func-names in Emscripten for automatic 
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demangling, logging from Wasm into the JS environment via env.log and console.trace calls, and post-

processing stack traces with the source-map-support package. 

To meet the performance demands of complex applications, low-level programming languages such as C/C++ 

or Rust are typically preferred. These languages provide fine-grained control over memory and processing and 

can be compiled into the WebAssembly binary format using specialized tools like Emscripten for C/C++ or 

rustc for Rust [2, 8]. The resulting Wasm module is compact and runs at nearly native speed, making it ideal for 

scenarios that require minimal latency and efficient resource utilization. 

A major advantage of WebAssembly lies in its seamless integration with JavaScript through the standardized 

Wasm JavaScript API. Developers can export functions from a Wasm module and invoke them within 

JavaScript, as well as share data via linear memory. This approach allows offloading of performance-intensive 

operations to Wasm while retaining UI logic and control flow in JavaScript [1, 3]. 

For further performance gains—especially in tasks involving data processing and AI—recent research advocates 

combining Wasm with WebGPU. WebGPU offers low-level access to the GPU, enabling parallel computation 

of tasks such as matrix multiplications or convolution operations in neural networks [3, 7]. The synergy between 

WebAssembly and WebGPU enables the execution of complex algorithms directly on the client side, reducing 

server load and minimizing latency. 

For a more structured understanding of key WebAssembly integration strategies, Table 2 summarizes the 

approaches and their implementations: 

Table 2: Strategies for Integrating WebAssembly [1, 3, 4, 7] 

Strategy Description Code Example 

Compiling Source 

Code to Wasm 

Using C/C++ or Rust to implement 

performance-critical logic, followed 

by compilation to Wasm binary. 

<emscripten.h>EMSCRIPTEN_KEEPALIVE int 

add(int a, int b) { return a + b; } 

Wasm and 

JavaScript 

Interoperability 

Loading a Wasm module and invoking 

its exported functions via 

WebAssembly.instantiate, with data 

exchange through shared linear 

memory. 

fetch('module.wasm').then(response => 

response.arrayBuffer()).then(bytes => 

WebAssembly.instantiate(bytes, {})).then(results => 

{ const instance = results.instance; 

console.log(instance.exports.add(5, 3)); }) 

Using WebGPU for 

Parallel Computing 

Offloading heavy tasks (e.g., matrix 

operations in AI models) to the GPU 

using WebGPU API for faster data 

processing. 

async function initWebGPU() {const adapter = 

await navigator.gpu.requestAdapter();const device = 

await adapter.requestDevice();// Create buffer and 

run compute shader} 
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These strategies help developers systematize the process of integrating WebAssembly into web applications 

with high performance requirements. The choice of language and an optimized compilation process deliver a 

foundational performance boost, while JavaScript interoperability ensures flexibility in application control. 

Additionally, incorporating WebGPU can significantly enhance performance in parallel computing tasks, 

especially relevant in image processing and AI inference. 

A comprehensive approach combining these strategies enables substantial reductions in execution time for 

compute-heavy operations, decreased energy consumption, and improved application responsiveness—all 

confirmed by recent experimental research. 

In conclusion, integrating WebAssembly with traditional web technologies and modern tools like WebGPU 

represents a promising direction for building high-performance web applications capable of meeting today’s 

demands for speed, scalability, and security. 

4. Discussions 

This section presents a structured analysis of an experiment evaluating the performance of JavaScript, 

WebAssembly, and WebGPU technologies in the context of matrix multiplication operations (sizes ranging 

from 256 × 256 to 1024 × 1024) and Gaussian convolution on images (sizes from 256 × 256 to 2048 × 2048). 

The methodology involved the use of SIMD instructions, the implementation of memory access optimization 

strategies, and the monitoring of key execution metrics (mean, median, minimum, maximum, and relative 

speedup compared to baseline JavaScript). Based on the data obtained, the study outlines the limitations of 

current approaches and highlights promising directions for further development. 

The objective of the study was to determine under what conditions each of the technologies—JavaScript, 

WebAssembly, and WebGPU—demonstrates peak efficiency. For each task, a series of test runs were 

conducted with varying input sizes, along with a comparative analysis of implementations with and without 

SIMD, using techniques that optimize data locality and other performance-enhancing strategies. Testing 

included warm-up runs (10 iterations) to stabilize cache behavior, followed by 50 measurement runs. For each, 

average time, median, minimum and maximum execution times were recorded, along with the calculated 

speedup relative to the baseline JavaScript implementation. 

The methodological framework was based on a stepwise comparison of several software configurations solving 

the task of multiplying two square matrices of size N × N. Benchmark sizes were chosen as N = 256, 512, and 

1024, allowing for an evaluation of scalability across three representative data scales aligned with practical use 

cases. 

At the baseline level, two JavaScript implementations were evaluated. The first—“naive algorithm”—used a 

straightforward row-by-column traversal pattern, while the second incorporated partial transposition of one 

matrix and loop reordering to improve memory access continuity and reduce cache line miss penalties. 

Three WebAssembly configurations were tested. The initial version operated without SIMD and without 
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memory control, representing “raw” hardware-software performance. The second version introduced SIMD 

instructions to process multiple elements in parallel and reduce the number of iterations in the main loop. The 

third combined SIMD with optimized read/write patterns—specifically, block transposition and block-wise 

memory access—to minimize cache conflicts and further boost execution speed. 

The GPU-focused segment of the experiment featured two hybrid WebGPU-based configurations. In the 

“JavaScript + WebGPU” variant, data arrays were prepared in JavaScript and then passed to a compute shader 

executed on the GPU. In the “WebAssembly + WebGPU” variant, part of the setup and computation logic was 

offloaded to Wasm, while the shader execution remained managed by JavaScript. This setup allowed the study 

to assess whether Wasm preprocessing could provide tangible benefits when utilizing the same GPU core. 

Quantitative results for each configuration are summarized in Table 3, which includes both absolute execution 

times and relative speedup factors compared to the baseline JavaScript implementation. 

Table 3: Main results (example for a 1024×1024 matrix) 

Implementation Avg (ms) Median 

(ms) 

Min (ms) Max (ms) Speedup (×) 

JavaScript (standard) 1579.97 1567.10 1550.50 1750.20 1.00× 

JavaScript (optimized access) 1364.63 1359.20 1356.00 1450.30 1.16× 

WebAssembly (baseline) 3866.64 3861.00 3808.00 4035.00 0.41× 

WebAssembly (SIMD) 1762.92 1752.50 1731.00 1945.00 0.90× 

WebAssembly (SIMD + access 

optimized) 

961.52 957.00 954.00 1025.00 1.64× 

JavaScript + WebGPU 30.84 30.20 29.10 45.00 ~51× 

WebAssembly + WebGPU 31.08 30.25 28.10 40.50 ~51× 

 

Analysis of the collected data reveals that the baseline WebAssembly implementation—lacking both SIMD 

vectorization and optimized memory access—performs worse than its JavaScript counterparts in linear matrix 

multiplication tasks. The primary reason lies in the advanced capabilities of modern JavaScript JIT compilers, 

which leverage dynamic instruction reordering and aggressive loop unrolling to reduce cache misses by aligning 

memory access patterns with cache line layouts. In contrast, non-SIMD WebAssembly executes operations 

sequentially and suffers from excessive read/write latency. 

The integration of SIMD instructions into the WebAssembly module yields approximately a twofold 
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improvement in throughput compared to its initial version. This is confirmed by higher IPC (instructions per 

cycle) and reduced cycles per operation. However, such speedup is often insufficient to consistently outperform 

interpreted JavaScript code, especially when the algorithm retains an unstructured memory access pattern that 

fails to take advantage of aligned data blocks. 

Only the combination of SIMD vectorization with structured matrix transposition for block-based read/write 

access enables WebAssembly to surpass JavaScript by more than 60%. This approach couples the width of 

vector registers with a cache-local blocking strategy, effectively mitigating latency spikes from cache misses 

and inefficient local memory management. 

Offloading all computational workloads to the GPU using WebGPU leads to roughly a 50× speedup over CPU-

based implementations. Within this setup, the performance gap between "JavaScript + WebGPU" and 

"WebAssembly + WebGPU" becomes negligible: since the primary arithmetic operations are executed in GPU 

shaders, CPU-side data preparation—regardless of whether written in JavaScript or Wasm—incurs minimal 

overhead. 

For the image blurring task, based on a modified Gaussian convolution with separable filters, the experiment 

employed a two-pass scheme: horizontal filtering followed by vertical filtering. This strategy natively supports 

efficient vectorization by reducing the 2D convolution to two sequential 1D operations, significantly increasing 

SIMD register utilization and maximizing the CPU’s cache hierarchy. 

Test data consisted of images with resolutions of 256 × 256, 512 × 512, 1024 × 1024, and 2048 × 2048 pixels, 

with 8-bit channel representation. For each resolution, blur kernels with radii from 1 to 4 (i.e., 3 × 3, 5 × 5, 7 × 

7, and 9 × 9 matrices) were applied, allowing an assessment of scalability and the impact of kernel size on 

throughput across configurations. 

The methodology was implemented in four technological configurations: pure JavaScript, WebAssembly, and 

their respective combinations with WebGPU. In the latter cases, the CPU handled the preparatory logic, while 

the main computational workload was offloaded to the GPU. This range of implementations provides a 

comprehensive comparison of CPU and GPU performance under consistent experimental conditions. 

Table 4 presents the average execution time (in milliseconds) and speedup relative to the JavaScript (CPU) 

baseline across different kernel sizes. 
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Table 4: Average execution time (ms) and acceleration relative to JavaScript (CPU) for various core sizes. 

Implementatio

n 

3×3 

(ms) 

Speedup 5×5 

(ms) 

Speedup 7×7 

(ms) 

Speedup 9×9 

(ms) 

Speedup 

JavaScript 

(CPU) 

8.14 1.00× 11.08 1.00× 14.04 1.00× 17.22 1.00× 

WebAssembly 

(CPU) 

12.02 0.68× 15.56 0.71× 19.60 0.72× 22.30 0.77× 

JavaScript + 

WebGPU 

5.46 1.49× 5.40 2.05× 5.70 2.46× 6.16 2.80× 

WebAssembly 

+ WebGPU 

5.36 1.52× 6.00 1.85× 5.28 2.66× 6.30 2.73× 

 

Based on the experimental data presented in Table 4, it can be concluded that interpreted JavaScript running on 

the CPU often outperforms the WebAssembly variant—even with SIMD vectorization enabled. This apparent 

anomaly is explained by the fact that modern JavaScript engines conduct deep static and dynamic analysis of 

pixel array access patterns. Combined with aggressive JIT optimizations—including function inlining, dead 

code elimination, and branch prediction—this enables a reduction in cache misses and interline latency during 

memory access. 

At the same time, offloading the computational workload to the GPU via WebGPU yields a significant 

performance boost over any CPU-based execution. As image resolution increases from the baseline up to 1024 × 

1024 and then 2048 × 2048, the observed speedup continues to grow. This is attributed to the high degree of 

parallelism within GPU compute blocks and the superior memory bandwidth of video memory, which enables a 

broader front of simultaneous data processing. 

Ultimately, the performance difference between the “JavaScript + WebGPU” and “WebAssembly + WebGPU” 

configurations is statistically negligible. Since the core algorithmic logic is moved into shader code, minor 

variations during the CPU-side preprocessing phase are virtually neutralized. As a result, overall performance is 

governed almost entirely by the architectural characteristics of the GPU and the efficiency of the shader 

implementation, rather than the language used for preprocessing. 

A schematic of the data flow between JavaScript, WebAssembly, and WebGPU is presented below in Figure 1. 
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Figure 1: The source used for JavaScript, WebAssembly, and WebGPU 

This separation of responsibilities and the sequence of execution provide a clean architectural design. Each 

component performs a narrowly defined task, contributing to improved system robustness and easier 

maintainability. Within this scheme, JavaScript functions as the coordinator, managing data flow and triggering 

subsequent operations. WebAssembly serves as a CPU-side preprocessor, responsible for fast compilation, 

optimization, and code preparation. Finally, WebGPU/GPU handles the core computation and rendering tasks, 

leveraging parallel execution on the graphics accelerator to achieve peak performance. 

Despite the significant progress made in the development of WebAssembly and its broad adoption for enhancing 

the performance of web applications, several critical issues still limit its use under high-demand conditions, 

particularly in IoT environments. At the same time, the technology’s developmental trajectory opens up 

opportunities to overcome these limitations and expand its functionality. 

One of the main challenges is the lack of native garbage collection support in Wasm, which becomes especially 

noticeable when working with high-level languages that rely on dynamic memory management [9]. As a result, 

developers are forced to implement custom memory management solutions, which increases development 

complexity and raises the risk of memory leaks. 

Another issue is the limited availability of debugging and testing tools for binary modules. While some 

protocols like DWARF for Wasm exist, current debuggers often provide less comprehensive information than 

those used with traditional languages, making error localization and resolution more difficult. 
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Inter-language integration is also a major constraint. Although Wasm is designed to integrate seamlessly with 

JavaScript, transferring complex data structures between Wasm modules and JavaScript typically requires 

additional conversion, which can introduce performance overhead and potential bugs [4, 10]. 

In IoT contexts, unique challenges arise due to constrained environments: limited RAM, low computational 

power, and restricted energy budgets. In such conditions, inefficient memory management and limited access to 

system and network APIs via Wasm create barriers to implementing advanced algorithms on low-level devices 

[2]. 

Despite these obstacles, several developmental directions promise to significantly extend WebAssembly’s 

capabilities and resolve current limitations: 

● Introduction of native garbage collection. The development of a standardized GC mechanism for Wasm 

will ease the use of dynamic memory management languages and reduce the likelihood of memory-related bugs 

[1]. 

● Expansion of multithreading and SIMD support. Prototypes demonstrating multithreaded execution and 

SIMD instruction usage show strong potential to accelerate data processing and improve Wasm module 

efficiency [2]. 

● Development of WASI and improved cross-platform integration. The WebAssembly System Interface 

(WASI) aims to provide a universal interface for system resource access, allowing Wasm modules to operate not 

just in browsers but also on servers and IoT devices, with consistent and secure behavior [1]. 

● Enhancement of debugging and profiling tools. Creating dedicated IDEs, debuggers, and profilers for 

Wasm will enable developers to more easily detect and fix bugs and optimize performance [4]. 

● Integration with WebGPU for compute acceleration. The synergy between Wasm and WebGPU allows 

offloading compute-heavy tasks to GPUs, which is especially valuable in applications involving image 

processing and AI inference [3]. 

The analysis shows that WebGPU delivers substantial performance gains—sometimes by an order of 

magnitude—thanks to the massive parallelization of compute shaders across hundreds or even thousands of 

workgroups. However, its current potential is limited by support for only a basic set of arithmetic operations 

(addition, multiplication, division, square root, etc.), making WebGPU especially effective for algorithms with 

straightforward, low-branching mathematical logic and no dynamic data structures. Tasks that require frequent 

CPU interaction or involve complex conditional branching fall outside the optimal use case for WebGPU. 

WebAssembly, on the other hand, outperforms JavaScript in scenarios where the computational workload 

permits strictly sequential or block-based memory access, leverages SIMD instructions, and optimizes 

read/write order—for instance, by pre-transposing matrices for multiplication. In such conditions, Wasm 

demonstrates significantly higher memory throughput and more deterministic execution time than traditional 

JavaScript, owing to the low-level nature of its bytecode and its ability to analyze memory access patterns. 

Nevertheless, interpreted JavaScript remains competitive when dealing with irregular or sparse access patterns 
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(e.g., localized pixel sampling in raster images). In these cases, JavaScript engines employ internal optimization 

strategies—such as inline caching, speculative optimization, and object field optimizations—while their low 

context-switch overhead makes JavaScript preferable for lightweight tasks where the cost of marshalling data 

into WebAssembly or GPU shaders would outweigh the performance benefits. 

In the context of WebGPU, the near parity between JavaScript+WebGPU and Wasm+WebGPU 

configurations—each achieving roughly a 50× speedup—stems primarily from the GPU’s computational 

dominance. Data-transfer times (from CPU memory to GPU memory) and the overhead of shader compilation 

and execution far outweigh the CPU-side preparation costs, rendering marginal performance differences 

between JavaScript and WebAssembly negligible. This outcome directly illustrates Amdahl’s Law: as the 

parallel portion of the workload (GPU computations) accelerates dramatically, the sequential portion (CPU-side 

logic) becomes an ever-smaller fraction of total execution time. 

5. Conclusion 

Through architectural, experimental, and methodological analysis, it has been established that WebAssembly is 

capable of significantly enhancing the performance, energy efficiency, and security of the modern web stack. 

When combined with system-level languages such as Rust, C, or C++, and configured with a well-structured 

toolchain—Clang + wasm-ld, wasm-bindgen, wasm-pack—alongside hardware acceleration via WebGPU, 

SIMD extensions, and multithreading, WebAssembly can achieve over 50× reduction in execution time for 

typical linear algebra operations when offloaded to the GPU. For CPU workloads with predictable data locality, 

a stable performance gain of 60–70%over optimized JavaScript is also observed, along with deterministic 

behavior due to strict sandboxing and the elimination of side effects. 

However, the lack of a built-in garbage collector, immature debugging infrastructure, and interlanguage 

marshalling overhead continue to limit WebAssembly’s adoption in resource-constrained scenarios typical of 

edge and IoT platforms. Therefore, it is advisable to establish a cost-effective migration threshold early in the 

design process. Before porting compute-intensive logic, developers should measure the total data marshalling 

overhead between JavaScript and Wasm; if this exceeds 15–20% of overall execution time, it's preferable to first 

optimize the data structure (e.g., SOA/AOS layout, memory alignment), introduce a linear memory pool, and 

only then proceed with the migration. This profiling → zero-copy → Wasm strategy typically provides a 1.3–

1.5× speedup compared to naïve "lift-and-shift" approaches. 

Building a continuous pipeline (Rust → Wasm → WebGPU) requires a systemic mindset and tight dependency 

control. Projects should be compiled using: cargo build --target wasm32-unknown-unknown -Z build-

std=std,panic_abort with LTO and PGO flags enabled to produce compact binaries. It's recommended to pin 

versions of wgpu-core and nagain the lockfile, and use wasm-opt -O3 --enable-simd --enable-multivalue -g 

source-map for production builds. Integrating the dawn/wgpu engine provides a unified codebase for cross-

platform deployment, as WebGPU shaders are automatically translated into SPIR-V, MSL, or HLSL. A 

monorepo with single-step builds helps reduce regressions and cuts MTTR from days to hours. 
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Running Wasm modules in production requires multi-level observability. During development, code should be 

compiled with DWARF-5 and source maps, symbolic info stored in the CI environment, and llvm-symbolizer 

connected via vscode-wasm. In integration pipelines, it’s important to collect performance.mark and 

resourceTiming metrics, tag them with a version hash, and export to OpenTelemetry or Jaeger. In production, 

enabling experimental wasm-exception-handling (in Chrome and Firefox Nightly) provides precise stack traces, 

while crash dumps should be sent to Sentry with automatic symbol demangling. This end-to-end traceability 

reduces critical defect localization from hours to minutes and ensures consistent system behavior even as 

runtimes evolve. 

However, this study has several limitations. First, the empirical evaluation focused on only two computational 

kernels—dense‐matrix multiplication and Gaussian convolution—which, while representative of certain high‐

performance domains (e.g., image processing), may not generalize fully to the diverse workloads encountered in 

real‐world web applications, such as those involving irregular data structures, complex control flow, or string 

manipulation. Second, all performance measurements were conducted in a specific hardware–software 

environment—details on browser versions and CPU/GPU models were not exhaustively documented—so 

variations in these components could yield quantitatively different outcomes. Finally, given the rapid evolution 

of WebAssembly, WebGPU, and JavaScript technologies, the reported performance characteristics may shift as 

these platforms continue to mature. 

In conclusion, WebAssembly is steadily emerging as the central layer of a high-performance client-side stack, 

especially when paired with WebGPU and WASI. By following best practices—defining cost-efficient 

migration thresholds, implementing unified CI pipelines, and embedding full observability—developers can 

extract maximum value from Wasm today, while minimizing risks associated with its relative immaturity and 

laying a solid foundation for scalable, energy-efficient web and edge computing solutions. 
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