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Abstract 

In this article, Homotopy Perturbation Method (HPM) is used to provide two approximate solutions to the 

nonlinear differential equation that describes the behaviour for the unsteady squeezing flow of a second grade 

fluid between circular plates. Comparing results between approximate and numerical solutions shows that our 

results are capable to provide an accurate solution and are extremely efficient. 
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1. Introduction 

According to the classification of Prandtl, the fluid motion is divided into two regions. The first, study the 

region near the object where the effect of friction is important and is known as the boundary layer; while for the 

second type, these effects can be neglected [1,2,3]. It is common to define the boundary layer as the region 

where the fluid velocity parallel to the surface is less than 99% of the free stream velocity [1]. 

The boundary layer thickness δ increases from the edge along the surface on which fluid moves. Even in the 

case of a laminar flow, the exact solution of equations describing the laminar boundary layer is very difficult 

and only few simple problems can be analysed easily [1,3]. 

An interesting case study is that of a squeezing flow between parallel plates. Although the studies of squeezing 

flows have its origins in the 19 th century, at present it is an issue of considerable importance, due to the 

practical applications in different areas such as physical, biophysical, and food industry among many others. Of 

particular interest for fluid mechanics, are the polymer extrusion process modelled using squeezing flow of 

viscous fluids [61]. Also the squeezing flow between parallel plates when the confining walls have a transverse 

motion is of a great importance in hydrodynamic lubrication theory [62]. Despite the importance of these 

processes, getting analytical approximate solutions is complicated, thus numerical solutions of squeezing flow 

between parallel plates has been conducted by Verma [63] and later by Singh and his colleagues [64]. Therefore 

in this article, two approximate solutions for the case of the squeezing flow of a fluid between circular plates are 

obtained. In [4], may be found a detailed discussion of this topic. 

Ji Huan He [5,6]; proposed the standard Homotopy Perturbation Method (HPM); it was introduced as a 

powerful tool to approach various kinds of nonlinear problems. The HPM  can be considered as combination of 

the classical perturbation technique and the homotopy (whose origin is in the topology), but not restricted to the 

limitations found in  traditional perturbation methods. For instance, HPM method does need neither small 

parameter nor linearization, just few iterations to obtain accurate results [5,6,20-31,33-38,41,47,48,50-55,58].  

There are other modern alternatives to find approximate solutions to the differential equations that describe 

some nonlinear problems such as those based on: variational approaches [7-9, 31], tanh method [10], exp-

function [11,12], Adomian’s decomposition method [13-18,42], parameter expansion [19], homotopy analysis 

method [4,32,49], and perturbation method [56] among many others. 

This paper is arranged as follows. Sections 2 provide the basis of HPM method. In Section 3, we introduce 

governing equations. We present two approximate solutions of the fluid’s equation in Section 4. Comparisons 

between the two methods are presented in Section 5. Finally, the conclusions will be presented in Section 6. 

2. Basic concepts of HPM 

 To figure out how HPM method works, consider a general nonlinear equation in the form  

( ) ( ) 0,A u f r− =                  r∈Ω ,                                                                          (1) 
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with the following boundary conditions 

( , / ) 0,B u u n∂ ∂ =    r∈Γ ,                                                                                         (2) 

where A  is a general differential operator, B  is a boundary operator, ( )f r a known analytical function and Γ

is the domain boundary for Ω . 

Also, A  can be divided into two parts L  and N , where L  is linear and N nonlinear; from this last statement, 

(1) can be rewritten as  

( ) ( ) ( ) 0L u N u f r+ − = ,                                                                                               (3) 

In a broad sense, a homotopy can be constructed in the form [5, 6] 

0( , ) (1 )[ ( ) ( )] [ ( ) ( ) ( )] 0H v p p L v L u p L v N v f r= − − + + − = , [0,1],p∈  r∈Ω .           (4) 

or 

0 0( , ) ( ) ( ) [ ( ) ( ) ( )] 0H v p L v L u p L u N v f r= − + + − = ,      [0,1]p∈ ,  r∈Ω .              (5) 

where p is a homotopy parameter, whose values are within range of 0 and 1, 0u  is the first approximation to the 

solution of (3) that satisfies the boundary conditions. 

Assuming that solution for (4) or (5) can be written as a power series of p . 

+++= 2
210 pvpvvv                                                                                      (6) 

Substituting (6) into (5) and equating identical powers of p terms, it is possible to obtain the values for the 

sequence 0,u 1,u 2,u … 

When 1p → , it yields in the approximate solution for (1) in the form  

0 1 2 3...v v v v v= + + +                                                                                                       (7) 

Another way to build a homotopy, which is relevant for this paper, is by considering the following general 

equation 

( ) ( ) 0L v N v+ = ,                                                                                                             (8) 
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where ( )L v  and ( )N v are the linear and no linear operators respectively. It is desired that solution for 

( ) 0L v =  describes, accurately, the original nonlinear system. 

By the homotopy technique, a homotopy is constructed as follows [28] 

(1 ) ( ) [ ( ) ( )] 0p L v p L v N v− + + = .                                                                                  (9) 

Again, it is assumed that solution for (9) can be written in the form (6); thus taking the limit when 1p → results 

in the approximate solution of (8).  

3. Mathematical Formulation 

Consider a two dimensional squeezing flow of nonconducting, incompressible second grade fluid between two 

circular plates. The instantaneous distance between the plates at any time t  is 2 ( )a t . The central axis of the 

channel is taken as the r-axis and z-axis is normal to it (see Fig. 1). The velocity components along the radial 

and axial directions are ( , , )u r z t  and ( , , )v r z t respectively. The fluid is assumed to have density ρ , kinematics 

viscosityν , coefficient of viscosity µ , and material constants 1α and 2α . 

The relevant equations of motion for a homogeneous and incompressible second grade two dimensional 

unsteady fluid, neglecting the thermal effects are [4]. 

 

Figure 1: Geometry of the problem 

0,u u w
r r z
∂ ∂

+ + =
∂ ∂

                                                                                              (10) 
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( ) ( )2 2 2

1 22 2 2

1 2 ,1 1
uh u w w

r t t t r r r z r r z r
r µ α α α α

   ∂ Ω    ∂ ∂ ∂ ∂Ω ∂ ∂ ∂ Ω Ω   + − Ω = − + − + + Ω− + + +            ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂           
    

(11) 

( ) ( )2 2

1 1 2 2 2

1 2 .1 2
uh w u u

z t t r r r r r z r r z
r µ α α α α

   ∂ Ω  ∂ ∂ ∂ ∂Ω Ω ∂ ∂ ∂ Ω    + + Ω = + + + + + Ω− − +            ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂           
     (12) 

Where 

,w u
r z

∂ ∂
Ω = −

∂ ∂
                                                                                                             (13) 

( ) ( )2 2 2
1 1 2 1

1 1 3 2 ,
2 4

h u w p w u A
r r z

r α α α ∂ ∂  = + + − + − Ω− +  ∂ ∂  
                         (14) 

and to simplify, we have defined  

2 2 2 2
2

1 4 4 4 2u w u u wA
r z r z r

 ∂ ∂ ∂ ∂       = + + + +        ∂ ∂ ∂ ∂         
.                                                (15) 

Eliminating h between (11) and (12) we obtain 

uu w
t r z r

r
 ∂Ω  ∂ ∂  + + − Ω =   ∂ ∂ ∂   

 

2 2

1 2 2 2

1
t r r r z r

µ α
  ∂ ∂ ∂ ∂ Ω + + + Ω− +   ∂ ∂ ∂ ∂    

                                              (16) 

                 
2 2

1 2 2 2

1uu w
r z r r r r z r

α
  ∂ ∂ ∂ ∂ ∂ Ω + − + + Ω− −   ∂ ∂ ∂ ∂ ∂    

 

                  
2 2 2

1 2
2 2

1 12 .
2

u
r r r r z z

α α   + ∂ ∂ ∂ ∂Ω  + + Ω+    ∂ ∂ ∂ ∂    
 

The boundary conditions on ( , , )u r z t and ( , , )w r z t  are given by 

( , , ) 0u r z t = , ( , , ) ( )w r z t V t=  , z a= , 
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( , , ) 0w r z t = ,
( , , ) 0,u r z t

z
∂

=
∂

 z a= ,                                                                      (17) 

where ( ) /V da t dt=  denotes the velocity of the plates (see Fig. 1). 

Introducing dimensionless variable / ( )z a tη = , equations (13), (10), and (16) adopt the form 

,w u
r a η

∂ ∂
− = Ω

∂ ∂
                                                                                                          (18) 

0,u u w
r r a η
∂ ∂

+ + =
∂ ∂

                                                                                                   (19) 

uu w
t r a r

r
η

   ∂Ω ∂ ∂
+ + − Ω =    ∂ ∂ ∂   

 

2 2

1 2 2 2

1
t r r r z r

µ α
  ∂ ∂ ∂ ∂ Ω + + + Ω− +   ∂ ∂ ∂ ∂    

                                             (20) 

                 
2 2

1 2 2 2

1uu w
r a r r r r z r

a
η

   ∂ ∂ ∂ ∂ ∂ Ω
+ − + + Ω− −   ∂ ∂ ∂ ∂ ∂    

 

                  
2 2 2

1 2
2 2

1 12 .
2

u
r r r r z a

aa
η

  + ∂ ∂ ∂ ∂Ω  + + Ω+    ∂ ∂ ∂ ∂    
 

The boundary conditions on ( , , )u r tη and ( , , )w r tη  are given by 

( , , ) 0u r tη = , ( , , ) ( )w r t V tη =  , 1η =  ,                                                                    (21) 

( , , ) 0w r tη = ,
( , , ) 0,u r tη
η

∂
=

∂
0η = .                                                                         (22) 

Defining the velocity components as [4], [64]: 

( ) ( )
2 ( )

ru V t y
a t

η− ′= , ( ) ( )w V t y η= ,                                                                        (23) 

it follows that (18) takes the following form 
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( ) ( ).
2 ( )

r V t y
a t

η′′Ω =                                                                                  (24) 

The substitution of (22) and (23) into (19) and (20) yield 

( ) ( / )2aV a dV dtyy y y y
v vV

η′′′ ′′ ′′′ ′′− − + =  

( )1 2 1
2

( ) ( / )2 4iv iv v v iv ivV V a dV dty y y y y yy y y y
a a vV

aaa 
η

µ µ
+  ′′ ′′′ ′+ + + − − + 

 
              (25) 

where prime denotes differentiation with respect toη . 

The boundary conditions on ( )y η  are deduced from (21), (22), and (23) so that 

(1) 1y = , (1) 0y′ = , 

(0) 0y = , 0)0('' =y                                                                                                  (26) 

In order to obtain a similarity solution, we define  

e
aV R
ν

= ,                                                                                                                   (27) 

2 ( / )
e

a dV dt R Q
Vν

= ,                                                                                                        (28) 

1
1e

V W
a

a
µ

= ,                                                                                                                 (29) 

2
2e

V W
a

a
µ

= ,                                                                                                                (30) 

for a similarity solution, eR , Q , 1eW and 2eW are considered constants. 

After integrating (27), we obtain  

1/ 2( ) ( )0a t Kt a= + ,                                                                                                 (31) 

where K and 0a are constants; in particular 02a denotes the initial separation between the  



American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) (2017) Volume 27, No  1, pp 161-178 

168 
 

plates. 

From (27)-(31), it follows that 1Q = − , and (25) becomes  

2 ( ) ( ) (2 ),iv v ivy K y L y y M y y N y y y yη η′′ ′′′ ′′ ′′′ ′+ = − + − − +                           (32) 

in the above equation we have defined  

1

3
1 5

e

e

RK
W

=
−

,                                                                                                          

11 5
e

e

RL
W

=
−

,                                                                                                                (33) 

1

11 5
e

e

WM
W

=
−

, 

1 2

11 5
e e

e

W WN
W
+

=
−

. 

In this work, we will consider the following case for constants: K = 1.732, L = 1, M = 0, 

N = 0.05 as reported in [4]. 

4. Approximate solution for the unsteady squeezing flow of a second-grade fluid equation by using HPM. 

In this section, we will employ two different variants of HPM formulation, to find two accurate approximate 

solutions of (32), by using the first order approximation. 

4.1 First HPM Approximation 

Identifying the linear part as 

( )ivl y η= ,                                                                                                                (34) 

and the nonlinear  

2 ( ) ( ( ) ) ( ) (2 ( ) ( ) ( ) ( ))ivn K y L y y N y y y yη η η η η η η η′′ ′′′ ′′ ′′′ ′= − − + + ,    (35) 

we construct a homotopy starting from (9), in the form 
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( ) ( ) ( ) ( ) ( )( ) ( )(
( ) ( ) ( ) ( ))( )ηηηη

ηηηηηη
iv

iviv

yyyyN
yyLyKypyp

′+′′′′′+

′′′−−′′++−

2
1 2

                            (36) 

Then substituting (6) into (36), and equating terms having identical powers of p we obtain  

( )
( )

)( ))(())())((()())((2
))()(())(())(()()()(:

,0:

''
0

2
0

'
0

'''
0

''
0

00
'''

001
'''

00
1

0
0

ηηηηη

ηηηηηηηη

η

yKyyNyyN
yMyyLnyMyyLyp

yp

iv

vviv

iv

+++

++−+−

=

              (37) 

In order to fulfill the boundary conditions from (26), it follows that 

,0)1(,1)1(,0)0(,0)0( 0000 =′==′′= yyyy  and .0)1(,0)1(,0)0(,0)0( 1111 =′==′′= yyyy   

Thus, the results obtained from the above equations are     

η

ηηη

ηη







 −−+







 ++−+






 −−+=

+=

NLK

NLKNLKLy

y

20
3

112
1

40
1

10
3

560
11

20
1

20
3

80
1

40
1

560
1

2
3

2
1

2

32527
1

3
0

              (38) 

By substituting solutions (38) into the first to terms of (6) and calculating the limit when 1p → , results in a 

first order approximation.  

(39) 

4.2 Second HPM Approximation 

Identifying the linear part as 

2( ) ( )ivl y K yη η′′= + ,                                                                                                (40) 

and the nonlinear  

( ( ) ) ( ) ( ( )) ( ) (2 ( ) ( ) ( ) ( ))v ivn L y y M y y N y y y yη η η η η η η η η η′′′ ′′ ′′′ ′= − − − − + + ,            (41) 

we construct a homotopy starting from (9), in the form 

2 2(1 )( ( ) ( )) ( ( ) ( ) ( ( ) ) ( ) (2 ( ) ( ) ( ) ( ))iv iv ivp y K y p y K y L y y N y y y yη η η η η η η η η η η′′ ′′ ′′′ ′′ ′′′ ′− + + + − − + +    (42) 

3 7 5
0 1( ) ( ) ( ) 0.615348 1.558567 0.0017857 0.055y y yη η η η η η η= + = − + + +
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Substituting (6) into (42), and equating terms having identical powers of p we obtain  

( )
( )( ) ( )( ) ( )( ) ( )( ) ( )( )

( ) ( )( ) ( ) ( )( )


ηηηηη

ηηηηη

η

'''
00

'''
01

0
'
0

'''
0

''
0

''
1

21

''
0

2
0

0

2:
,0:

yLyyLy
yyNyyNyKp

yKyp

iv

iv

iv

−++

++

=+

                                              (43) 

In order to fulfill the boundary conditions from (26), it follows that 

,0)1(,1)1(,0)0(,0)0( 0000 =′==′′= yyyy  and .0)1(,0)1(,0)0(,0)0( 1111 =′==′′= yyyy  Then, 

solving (43), results 

( ) ( )

( ) ( )( ) ( ) ( )( ) ( )[ ηη

ηηη

KKKKc
KKKK

y

Kccy

2sinsincos
sincos

1
24
1)(

,sin

341

210

−−
−

=

+=
 

( ) ( ) ( )( )( )((( 2
1233 12262sin2cos2 KcLcKcKKc −+−−+−+ ηη  

 

( ) ( )( ) ( )( ) ( )[ ηKcKcLcKKK cos1sincos30 45
22

12 −−−+                                                    (44) 

( ) ( ) ( ) ( )
( )( ) ( ) ( ) ( )( ) ( )

( ) ( )( ) ] ] ,1cos

sin1cossin1

2sincossin2cos

45
22

12
2

45
22

12
2

43
22

125
3

330
1

315
1

KKcKcLcK

KcKcLcKKKcKcLc

KKcKKc

η−−−

−−+−−−

+−

 

,
)sin()cos(

1,
)sin()cos(

)cos(
21 KKK

c
KKK

KKc
−

=
−

=   

,,3 1
4

24
52

2
32

23 cKNccKNcKLcc =+=  

By substituting solutions (44)  into (42) and calculating the limit when 1p → , results in a trigonometric first 

order approximation.  

( ) ( ) ( ) ( ) ( )
( ) ( )ηηηη

ηηηηηη

732.1sin15419473.0732.1cos4526567.0
464.3sin0218.0732.1sin367.127657665.0

2
10

−−

−+−=+= yyy
.        (45) 

 

) ( ) ( )( )( )( )) ) ( )ηηη KKcKLKcKc sin111cossin2 2
1

3
24 −+−+−
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5. Discussion 

For comparison purposes we use the Fehlberg fourth-fifth order Runge-Kutta method with degree four 

interpolant (RKF45) [65, 66] solution (built-in function of Maple software).  In order to obtain a good numerical 

reference the accuracy of RKF45 was set to an absolute error of 710− and relative error of 610− . Fig. 2(a) shows 

the comparison between RKF45 numerical solution of (32) and approximations given by (39) and (45), obtained 

by using HPM formulations (36) and (42), respectively. From Fig. 2(b) for absolute error (A.E), it is clear that 

proposed approximations are in good agreement with RKF45. In fact, the bigger A.E. for (39) is 0.0016 and for 

(45) is only 0.0004. On the other hand, Fig. 3(a) compares RKF45 numerical solution for ( )y η′  and the 

corresponding approximations obtained differentiating (39) and (45). Finally, from Fig. 3(b), we conclude that 

A.E. is low for both cases, being it 0.006 for the derivative of (39) and less than 0.002 for the derivative of (45).  

Although (32) was originally solved by HAM with good accuracy [4], the obtained results correspond to a 20-th 

order approximation and therefore requiring more computational resources for practical use. In contrast (39) and 

(45) are both, highly accurate and handy. 

 

(a) 

 

(b) 

Figure 2: Approximate HPM  solutions: polynomial (39) and trigonometric (45) and its error with respect to 

RKF45 
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(a) 

 

(b) 

Figure 3: Approximate derivative of: polynomial (39) and trigonometric (45) and its error with respect to 

RKF45. 

6. Conclusion 

An important task is to find analytic expressions that provide a good description of the solution to the nonlinear 

differential equations like (32). For instance, the case of an unsteady squeezing flow between circular plates is 

adequately described by our approximations given by (39) and (45) (see Fig. 2 and Fig. 3). A relevant fact of 

HPM method is that even utilizing the first order approximation, we obtained highly precise solutions for (32). 

Moreover, Figs. 2(b) and 3(b) for the absolute error show that the proposed solutions are highly accurate. In 

contrast to RKF45 numerical solutions, HPM methods allow both quantitatively and qualitatively analyse the 

solution. Therefore is expected that other problems in the field of fluid mechanics, described by nonlinear 

differential equations can be solved in a similar way, following the techniques employed in this work. 
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