Adaptive Monitoring and Localization of Faulty Node in a Wireless Sensor Network

James Agajo, Okhaifoh J., Onyebuchi Nosiri, Ekwueme Emmanuel Uchenna


This work seeks to solve the problem that is being experienced in most existing remote monitoring systems by coming up with an enhanced monitoring system called Wireless Sensor Network. A Personal Area Network was evolved to increase the coverage area by spatially distributing Sensor nodes to capture and transmit physical parameters like temperature and Carbon monoxide in an indoor local cooking environment. Faulty node detection and localization was also realized, this was achieved by coming up with an algorithm that logically considers the receive signal strength value of -100 dbm as threshold, Result of data transmitted were viewed via a C-Sharp interface for Adaptive monitoring. The result from the Visual Basic plot shows that the Sensor nodes were able to capture temperature range of between 250C  to 510C  while the result of the CO emission shows an interval of 0.01g/m3  to 30.0 g/m3. A comparison between data transmitted at source and data received at the destination (sink) was carried out, a ranking test was used to validate the data received, a 0.9325 correlation value was obtained which shows a high level of integrity of 93.25% .                                                                


WSN; Faulty node; Adaptive Monitoring; Data Acquisition.

Full Text:



  • There are currently no refbacks.




About ASRJETS | Privacy PolicyTerms & Conditions | Contact Us | DisclaimerFAQs 

ASRJETS is published by (GSSRR).