Brief Review on Iron-Based Superconductors Including Their Characteristics and Applications

Authors

  • Atikur Rahman
  • Arafat Hossen

Keywords:

Iron-based superconductors, Properties of iron-based superconductors, Applications

Abstract

The recent discovery of iron-based superconductors has evoked eagerness for extensive research on these materials because they form the second high-temperature superconductor family after the copper oxide superconductors and impart an expectation for materials with a higher transition temperature (Tc). It has also been clarified that they have peculiar physical properties including an unconventional pairing mechanism and superconducting properties preferable for application such as a high upper critical field and small anisotropy. Iron-based superconductors are the new star in the world of solid state physics. The stunning discovery of superconductivity in iron-based materials has exposed a new family of high-temperature superconductors with properties that are both similar to and different than those of the copper-oxide family of superconductors.  With transition temperatures approaching the boiling point of liquid nitrogen, these materials promise to provide a rich playground to study the fundamentals of superconductivity, while advancing the prospects for widespread technological applications. In this review paper we have studied the iron-based superconductors, their classifications, different properties and applications.

References

[1] J. G. Bednorz and K. A. Müller, “Possible high Tc superconductivity in the Ba-La-Cu-O system”, Z. Phys. B 64, 189-193 (1986).
[2] Y. Kamihara and his colleagues , “Iron-based layered superconductor: LaOFeP”, J. Am. Chem. Soc. 128, 10012-10013 (2006).
[3] Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono,“Iron-based layered superconductor La[O1-xFx]FeAs (x= 0.05-0.12) with Tc = 26 K”, J. Am. Chem. Soc. 130,3296-3297 (2008).
[4] Kamihara, Y., and his colleagues (2006). Iron-based layered superconductor: LaOFeP. Journal of the American Chemical Society, 128, 10012–10013.
[5] Kamihara, Y., Watanabe, T., Hirano, M., & Hosono, H. (2008). Iron-based layered superconductor
La [O1?xFx ]FeAs(x = 0.05 ? 0.12) with Tc = 26K. Journal of the American Chemical Society, 130, 3296.
[6] Zhi-An, R., and his colleagues (2008). Superconductivity at 55 K in iron-based F-doped layered quaternary compound Sm[O1?xFx ]FeAs. Chinese Physics Letters, 25, 2215.
[7] Rotter, M., Tegel, M., & Johrendt, D. (2008). Superconductivity at 38 K in the iron arsenide (Ba1?xKx )Fe2As2. Physical Review Letters, 101, 107006.
[8] H. Ogino and his colleagues , “Superconductivity at 17 K in (Fe2P2)(Sr4Sc2O6): a new superconducting layered pnictide oxide with a thick perovskite oxide layer”,Supercond. Sci. Technol. 22, 075008 (2009).
[9] X. Zhu and his colleagues , “Transition of stoichiometric Sr2VO3FeAs to a superconducting state at 37.2 K”,Phys. Rev. B 79, 220512(R) (2009).
[10] S. Sato and his colleagues , “Superconductivity in a new iron pnictide oxide (Fe2As2)(Sr4(Mg,Ti)2O6)”, Supercond. Sci.Technol. 23, 045001 (2010).
[11] K.-W. Lee and W. E. Pickett, “Sr2VO3FeAs: a nanolayered bimetallic iron pnictide superconductor”, Euro. Phys. Lett. 89, 57008 (2010).
[12] J. Guo and his colleagues , “Superconductivity in the iron selenide KxFe2Se2 (0?x?1.0)”, Phys. Rev. B 82, 180520(R) (2010).
[13] Y. Zhang and his colleagues , “Nodeless superconducting gap in AxFe2Se2 (A=K, Cs) revealed by angle-resolved photoemission spectroscopy”, Nature Mater. 10, 273-277 (2011).
[14] D. Mou and his colleagues , “Distinct Fermi surface topology and nodeless superconducting gap in a (Tl0.58Rb0.42) Fe1.72Se2 superconductor”, Phys. Rev. Lett. 106, 107001 (2011).
[15] A. F. Wang and his colleagues , “Superconductivity at 32 K in single-crystalline RbxFe2-ySe2”, Phys. Rev. B 83, 060512(R) (2011).
[16] Kamihara, Yoichi; Watanabe, Takumi; Hirano, Masahiro and Hosono, Hideo (2008). "Iron-Based Layered Superconductor La[O1–xFx]FeAs (x = 0.05–0.12) with Tc = 26 K". Journal of the American Chemical Society 130 (11): 3296–3297. doi:10.1021/ja800073m. PMID 18293989
[17]Chen, X. H.; Wu, T.; Wu, G.; Liu, R. H.; Chen, H. and Fang, D. F. (2008). "Superconductivity at 43 K in SmFeAsO1–xFx". Nature 453 (7196): 761–762. Bibcode:2008Natur.453..761C. doi:10.1038/nature07045. PMID 18500328
[18] Ren, Zhi-An; Che, Guang-Can; Dong, Xiao-Li; Yang, Jie; Lu, Wei; Yi, Wei; Shen, Xiao-Li; Li, Zheng-Cai; Sun, Li-Ling; Zhou, Fang; Zhao, Zhong-Xian (2008). "Superconductivity and phase diagram in iron-based arsenic-oxides ReFeAsO1?? (Re = rare-earth metal) without fluorine doping". EPL (Europhysics Letters) 83: 17002. arXiv:0804.2582. Bibcode:2008EL.....8317002R. doi:10.1209/0295-5075/83/17002
[19]Rotter, Marianne; Tegel, Marcus and Johrendt, Dirk (2008). "Superconductivity at 38 K in the Iron Arsenide (Ba1–xKx)Fe2As2". Physical Review Letters 101 (10): 107006. arXiv:0805.4630. Bibcode:2008PhRvL.101j7006R. doi:10.1103/PhysRevLett.101.107006. PMID 18851249
[20] Sasmal, K.; Lorenz, Bernd; Guloy, Arnold M.; Chen, Feng; Xue, Yu-Yi; Chu, Ching-Wu (2008). "Superconducting Fe-Based Compounds (A1–xSrx) Fe2As2 with A=K and Cs with Transition Temperatures up to 37 K". Physical Review Letters 101 (10): 107007. Bibcode:2008PhRvL.101j7007S. doi:10.1103/physrevlett.101.107007. PMID 18851250
[21] Shirage, Parasharam Maruti; Miyazawa, Kiichi; Kito, Hijiri; Eisaki, Hiroshi; Iyo, Akira (2008). "Superconductivity at 26 K in (Ca1–xNax)Fe2As2". Applied Physics Express 1: 081702. Bibcode:2008APExp...1h1702M. doi:10.1143/APEX.1.081702
[22] Wang, X.C.; Liu, Q.Q.; Lv, Y.X.; Gao, W.B.; Yang, L.X.; Yu, R.C.; Li, F.Y.; Jin, C.Q. (2008). "The superconductivity at 18 K in LiFeAs system". Solid State Communications 148 (11–12): 538–540. arXiv:0806.4688. Bibcode:2008SSCom.148..538W. doi:10.1016/j.ssc.2008.09.057.
[23] Pitcher, Michael J.; Parker, Dinah R.; Adamson, Paul; Herkelrath, Sebastian J. C.; Boothroyd, Andrew T.; Ibberson, Richard M.; Brunelli, Michela; Clarke, Simon J. (2008). "Structure and superconductivity of LiFeAs". Chemical Communications (45): 5918–20. doi:10.1039/b813153h. PMID 19030538.
[24] Tapp, Joshua H.; Tang, Zhongjia; Lv, Bing; Sasmal, Kalyan; Lorenz, Bernd; Chu, Paul C. W.; Guloy, Arnold M. (2008). "LiFeAs: An intrinsic FeAs-based superconductor with Tc=18 K". Physical Review B 78 (6): 060505. arXiv:0807.2274. Bibcode:2008PhRvB..78f0505T. doi:10.1103/PhysRevB.78.060505.
[25] Chu, C.W.; Chen, F.; Gooch, M.; Guloy, A.M.; Lorenz, B.; Lv, B.; Sasmal, K.; Tang, Z.J.; Tapp, J.H.; Xue, Y.Y. (2009). "The synthesis and characterization of LiFeAs and NaFeAs". Physica C: Superconductivity 469 (9–12): 326–331. arXiv:0902.0806. Bibcode:2009PhyC..469.326C. doi:10.1016/j.physc.2009.03.016.
[26] Parker, Dinah R.; Pitcher, Michael J. and Clarke, Simon J. (2008). "Structure and superconductivity of the layered iron arsenide NaFeAs". Chemical Communications 2189 (16): 2189. arXiv:0810.3214. doi:10.1039/B818911K
[27] Zhang, S. J.; Wang, X. C.; Liu, Q. Q.; Lv, Y. X.; Yu, X. H.; Lin, Z. J.; Zhao, Y. S.; Wang, L.; Ding, Y.; Mao, H. K.; Jin, C. Q. (2009). "Superconductivity at 31?K in the "111"-type iron arsenide superconductor Na1?xFeAs induced by pressure". EPL (Europhysics Letters) 88 (4): 47008. Bibcode:2009EL.....8847008Z. doi:10.1209/0295-5075/88/47008
[28] Deng, Z.; Wang, X. C.; Liu, Q. Q.; Zhang, S. J.; Lv, Y. X.; Zhu, J. L.; Yu, R. C.; Jin, C. Q. (2009). "A new "111" type iron pnictide superconductor LiFeP". EPL (Europhysics Letters) 87 (3): 37004. Bibcode:2009EL.....8737004D
[29] Stewart, G. R. (2011). "Superconductivity in iron compounds". Rev. Mod. Phys. 83 (4): 1589. Bibcode:2011RvMP...83.1589S. doi:10.1103/revmodphys.83.1589
[30] H. Takahashi and his colleagues , “Superconductivity at 43 K in an iron-based layered compound LaO1-xFxFeAs”, Nature (London) 453, 376-378 (2008).
[31] X. H. Chen and his colleagues , “Superconductivity at 43 K in SmFeAsO1-xFx”, Nature (London) 453, 761-762 (2008).
[32]Y. Kamihara and his colleagues , J. Am. Chem. Soc. 128, 10012 (2006).
[33] G. F. Chen and his colleagues , “Superconductivity at 41 K and its competition with spin-density-wave instability in layered CeO1-xFxFeAs”, Phys. Rev. Lett. 100, 247002 (2008).
[34] Z. A. Ren and his colleagues , “Superconductivity at 52 K in iron based F doped layered quaternary compound Pr [O1-xFx]FeAs”, Mater. Res. Innov. 12, 105-106 (2008).
[35] K. Miyazawa and his colleagues , “Superconductivity above 50 K in LnFeAsO1-y (Ln=Nd, Sm, Gd, Tb, and Dy) synthesized by high-pressure technique”, J. Phys. Soc. Jpn. 78, 034712 (2009).
[36] Z.-A. Ren and his colleagues , “Superconductivity at 55 K in iron-based F-doped layered quaternary compound Sm[O1-xFx]FeAs”, Chin. Phys. Lett. 25, 2215-2216 (2008).
[37] C. de la Cruz and his colleagues , “Magnetic order close to superconductivity in the iron-based layered LaO1- xFxFeAs systems”, Nature (London) 453, 899-902 (2008).
[38] N. Qureshi and his colleagues , “Crystal and magnetic structure of the oxypnictide superconductor LaFeAsO1-xFx: a neutron-diffraction study”, Phys. Rev. B 82, 184521 (2010).
[39] J. Zhao and his colleagues , “Structural and magnetic phase diagram of CeFeAsO1-xFx and its relation to high-temperature superconductivity”, Nature Mater 7, 953-959 (2008).
[40] M. Putti, I. Pallecchi, E. Bellingeri, M. R. Cimberle, M. Tropeano, C. Ferdeghini, A. Palenzona, C. Tarantini, A. Yamamoto, J. Jiang, J. Jaroszynski, F. Kametani, D. Abraimov, A. Polyanskii, J. D. Weiss, E. E. Hellstrom, A. Gurevich, D. C. Larbalestier, R. Jin, B. C. Sales, A. S. Sefat, M. A. McGuire, D. Mandrus, P. Cheng, Y. Jia, H. H. Wen, S. Lee, and C. B. Eom: Supercond. Sci. Technol. 23 (2010) 034003.
[41] J. Jaroszynski, F. Hunte, L. Balicas, Y.-J. Jo, I. Raic?evic´, A. Gurevich, D. C. Larbalestier, F. F. Balakirev, L. Fang, P. Cheng, Y. Jia, and H. H. Wen: Phys. Rev. B 78 (2008) 174523.
[42] Z. S. Wang, H. Q. Luo, C. Ren, and H. H. Wen: Phys. Rev. B 78 (2008) 140501.
[43] M. Rotter, M. Tegel, and D. Johrendt, “Superconductivity at 38 K in the iron arsenide (Ba1-xKx)Fe2As2”, Phys. Rev. Lett. 101, 107006 (2008).
[43] X. C. Wang and his colleagues , “The superconductivity at 18 K in LiFeAs system”, Solid State Commun. 148, 538-540 (2008).
[44] R. Mittal and his colleagues , “Phonon dynamics in Sr0.6K0.4Fe2As2 and Ca0.6Na0.4Fe2As2 from neutron scattering and lattice-dynamical calculations”, Phys. Rev. B 78, 224518 (2008).
[45] R. Cortes-Gil and S. J. Clarke, “Structure, magnetism, and superconductivity of the layered iron arsenides Sr1-xNaxFe2As2”, Chem. Mater. 23, 1009-1016 (2011).
[46] F.-C. Hsu and his colleagues , “Superconductivity in the PbO-type structure ?-FeSe”, Proc. Natl. Acad. Sci. U.S.A. 105, 14262-14264 (2008).
[47] M. Rotter, M. Pangerl, M. Tegel, and D. Johrendt, “Superconductivity and crystal structures of (Ba1-xKx)Fe2As2 (x=0–1)”, Angew. Chem. Int. Ed. 47, 7949-7952 (2008). “Superconductivity and crystal structures of (Ba1-xKx)Fe2As2 (x=0–1)”, Angew. Chem. Int. Ed. 47, 7949-7952 (2008).
[48] N. Ni and his colleagues , “Effects of Co substitution on thermodynamic and transport properties and anisotropic Hc2 in Ba(Fe1?xCox)2As2 single crystals”, Phys. Rev. B 78, 214515 (2008).
[49] S. Jiang and his colleagues , “Superconductivity up to 30 K in the vicinity of the quantum critical point in BaFe2(As1?xPx)2”, J. Phys.: Condens. Matter 21,382203 (2009).
[50] J. Paglione and R. L. Greene, “High-temperature superconductivity in iron-based materials”, Nature Phys. 6, 645-658 (2010).
[51] T. Park and his colleagues , “Pressure-induced superconductivity in CaFe2As2”, J. Phys.: Condens. Matter 20, 322204 (2008).
[52] N. Doiron-Leyraud and his colleagues , “Quantum oscillations and the Fermi surface in an underdoped high-Tc superconductor”, Nature (London) 447, 565-568(2007).
[53] B. Maiorov, T. Katase, S. A. Baily, H. Hiramatsu, T. G. Holesinger, H. Hosono, and L. Civale: Supercond. Sci. Technol. 24 (2011) 055007.
[54] F.-C. Hsu and his colleagues , “Superconductivity in the PbO-type structure ?-FeSe”, Proc. Natl. Acad. Sci. U.S.A. 105, 14262-14264 (2008).
[55] S. Medvedev and his colleagues , “Electronic and magnetic phase diagram of ?-Fe1.01Se with superconductivity at 36.7 K under pressure”, Nature Mater. 8, 630-633 (2009).
[56] B. C. Sales and his colleagues , “Bulk superconductivity at 14 K in single crystals of Fe1+yTexSe1-x”, Phys. Rev. B 79, 094521 (2009).
[57] R. Hu, E. S. Bozin, J. B. Warren, and C. Petrovic, “Superconductivity, magnetism, and stoichiometry of single crystals of Fe1+y(Te1-xSx)z”, Phys. Rev. B 80, 214514 (2009).
[58] Y. Mizuguchi, F. Tomioka, S. Tsuda, T. Yamaguchi, and Y. Takano, “Superconductivity in S-substituted FeTe”, Appl. Phys. Lett. 94, 012503 (2009).
[59] J. H. Tapp, Z. Tang, B. Lv, K. Sasmal, B. Lorenz, C. W. Chu, and A. M. Guloy: Phys. Rev. B 78 (2008) 060505.
[60] J. Shimoyama, K. Kitazawa, K. Shimizu, S. Ueda, S. Horii, N. Chikumoto, and K. Kishio: J. Low Temp. Phys. 131 (2003) 1043.
[61] H. Ogino, S. Sato, N. Kawaguchi, Y. Shimizu, K. Machida, A.Yamamoto, K. Kishio, and J. Shimoyama: presented at Int. Workshop Novel Superconductors and Super Materials, 2011 (N2S2011).
[62] X. Wang, Q. Q. Liu, Y. X. Lv, W. B. Gao, L. X. Yang, R. C. Yu, F. Y. Li, and C. Q. Jin, Solid State Commun. 148, 538 (2008).
[63] J. H. Tapp, Zh. Tang, B. Lv, K. Sasmal, B. Lorenz, P. C. W. Chu, and A. M. Guloy, Phys. Rev. B 78, 060505 (2008).
[64] S. V. Borisenko, V. B. Zabolotnyy, D. V. Evtushinsky, T. K. Kim, I. V. Morozov, A. N. Yaresko, A. A. Kordyuk, G. Behr, A. Vasiliev, R. Follath, and B. B€uchner, Phys. Rev. Lett. 105, 067002 (2010).
[65] A. A. Kordyuk, V. B. Zabolotnyy, D. V. Evtushinsky, T. K. Kim, I. V. Morozov, M. L. Kulic´, R. Follath, G. Behr, B. B€uchner, and S. V. Borisenko, Phys. Rev. B 83, 134513 (2011).
[66]S. V. Borisenko, V. B. Zabolotnyy, A. A. Kordyuk, D. V. Evtushinsky, T. K. Kim, I. V. Morozov, R. Follath, and B. B€uchner, Symmetry 4, 251 (2012).
[67] I. Morozov, A. Boltalin, O. Volkova, A. Vasiliev, O. Kataeva, U. Stockert, M. Abdel-Hafiez, D. Bombor, A. Bachmann, L. Harnagea, M. Fuchs, H.-J. Grafe, G. Behr, R. Klingeler, S. Borisenko, Ch. Hess, S. Wurmehl, and B. B€uchner, Cryst. Growth Des. 10, 4428 (2010).
[68] G. F. Chen, W. Z. Hu, J. L. Luo, and N. L. Wang, Phys. Rev. Lett. 102, 227004 (2009).
[69] S. Li, C. de la Cruz, Q. Huang, G. F. Chen, T.-L. Xia, J. L. Luo, N. L. Wang, and P. Dai, Phys. Rev. B 80, 020504 (2009).
[70]M. A. Tanatar, N. Spyrison, K. Cho, E. C. Blomberg, G. Tan, P. Dai, Ch. Zhang, and R. Prozorov, Phys. Rev. B 85, 014510 (2012).
[71]D. R. Parker, M. J. P. Smith, T. Lancaster, A. J. Steele, I. Franke, P. J. Baker, F. L. Pratt, Michael J. Pitcher, S. J. Blundell, and Simon J. Clarke, Phys. Rev. Lett. 104, 057007 (2010).
[72] C. He, Y. Zhang, B. P. Xie, X. F. Wang, L. X. Yang, B. Zhou, F. Chen, M. Arita, K. Shimada, H. Namatame, M. Taniguchi, X. H. Chen, J. P. Hu, and D. L. Feng, Phys. Rev. Lett. 105, 117002 (2010).
[73] C. He, Y. Zhang, X. F. Wang, J. Jiang, F. Chen, L. X. Yang, Z. R. Ye, Fan Wu, M. Arita, K. Shimada, H. Namatame, M. Taniguchi, X. H. Chen, B. P. Xie, and D. L. Feng, J. Phys. Chem. Solids 72, 479 (2011).
[74] K. Segawa and Y. Ando, J. Phys. Soc. Jpn. 78, 104720 (2009). 73B. C. Sales, A. S. Sefat, M. A. McGuire, R. Y. Jin, D. Mandrus
[75] G. Osabe, N. Ayai, M. Kikuchi, K. Tatamidani, T. Nakashima, J. Fujikami, T. Kagiyama, K. Yamazaki, S. Yamade, E. Shizuya, S. Kobayashi, K. Hayashi, K. Sato, J. Shimoyama, H. Kitaguchi, and H. Kumakura: Physica C 470 (2010) 1365.
[76] Z. Gao, L. Wang, Y. Qi, D. Wang, X. Zhang, and Y. Ma: Supercond. Sci. Technol. 21 (2008) 105024.
[77] Z. Gao, L. Wang, Y. Qi, D. Wang, X. Zhang, Y. Ma, H. Yang, and H. Wu: Supercond. Sci. Technol. 21 (2008) 112001.
[78] Y. Qi, X. Zhang, Z. Gao, Z. Zhang, L. Wang, D. Wang, and Y. Ma: Physica C 469 (2009) 717.
[79] L. Wang, Y. Qi, D. Wang, X. Zhang, Z. Gao, Z. Zhang, Y. Ma, S. Awaji, G. Nishijima, and K. Watanabe: Physica C 470 (2010) 183.
[80] Y. Qi, L. Wang, D. Wang, Z. Zhang, Z. Gao, X. Zhang, and Y. Ma: Supercond. Sci. Technol. 23 (2010) 055009.
[81] Y. Ma, L. Wang, Y. Qi, Z. Gao, D. Wang, and X. Zhang: IEEE Trans. Appl. Supercond. 21 (2011) 2878.
[82] K. Togano, A. Matsumoto, and H. Kumakura: Appl. Phys. Express 4 (2011) 043101.
[83] M. Fujioka, T. Kota, M. Matoba, T. Ozaki, Y. Takano, H. Kumakura, and Y. Kamihara: Appl. Phys. Express 4 (2011) 063102.
[84] L. Wang, Y. Ma, Q. Wang, K. Li, X. Zhang, Y. Qi, Z. Gao, X. Zhang, DWang, C. Yao, and C. Wang: Appl. Phys. Lett. 98 (2011) 222504
[85] Y. Mizuguchi, K. Deguchi, S. Tsuda, T. Yamaguchi, H. Takeya, H. Kumakura, and Y. Takano: Appl. Phys. Express 2 (2009) 083004.
[86] T. Ozaki, K. Deguchi, Y. Mizuguchi, H. Kumakura, and Y. Takano: IEEE Trans. Appl. Supercond. 21(2011) 2858.
[87] T. Ozaki, K. Deguchi, Y. Mizuguchi, Y. Kawasaki, T. Tanaka, T. Yamaguchi, H. Kumakura, and Y. Takano: to be published in J. Appl.Phys.
[88] K. Iida, J. Ha¨nisch, S. Trommler, V. Matias, S. Haindl, F. Kurth, I. L. del Pozo, R. Hu¨hne, M. Kidszun, J. Engelmann, L. Schultz, and B. Holzapfel: Appl. Phys. Express 4 (2011) 013103.
[89] T. Katase, H. Hiramatsu, V. Matias, C. Sheehan, Y. Ishimaru, T. Kamiya, K. Tanabe, and H. Hosono: Appl. Phys. Lett. 98 (2011) 242510.
[90] Q. Li, W. Si, Q. Jie, J. Zhu, S. Solovyov, A. Goyal, and V. Matias: presented at Applied Superconductivity Conf., 2010 (ASC2010).
[91] W. Si, J. Zhou, Q. Jie, I. Dimitrov, V. Solovyov, P. D. Johnson, J. Jaroszynski, V. Matias, C. Sheehan, and Q. Li: Appl. Phys. Lett. 98 (2011) 262509.

Downloads

Published

2015-02-19

How to Cite

Rahman, A., & Hossen, A. (2015). Brief Review on Iron-Based Superconductors Including Their Characteristics and Applications. American Scientific Research Journal for Engineering, Technology, and Sciences, 11(1), 104–126. Retrieved from https://asrjetsjournal.org/index.php/American_Scientific_Journal/article/view/590