Antimicrobial Activity of SnO2 Nanoparticles against Escherichia Coli and Staphylococcus Aureus and Conventional Antibiotics

Authors

  • Rexona Khanom University of Dhaka, Bangladesh Council of Scientific and Industrial Research, Dhaka and 1205, Bangladesh
  • Sahana Parveen University of Dhaka, Bangladesh Council of Scientific and Industrial Research, Dhaka and 1205, Bangladesh
  • Mahfujul Hasan University of Rajshahi,Bangladesh Council of Scientific and Industrial Research, Dhaka and 1205, Bangladesh

Keywords:

Antimicrobial activity, SnO2 Nanoparticles, Escherichia Coli, Staphylococcus Aureus, Conventional Antibiotics.

Abstract

The prepared SnO2nanoparticles solution sample was employed for the inactivation of Gram-negative Escherichia coli (ATCC 25922) and Gram-positive Staphylococcus Aureus (ATCC 29213). The antibacterial activity of the synthesized SnO2 nanoparticles was evaluated using zone inhibition method. Antibacterial sensitivity of SnO2 nanoparticles in different dilution and conventional antibiotics were tested. 5 and 10 times of SnO2 nanoparticles solution shows strong inhibitory zone against E-coli and S. Aureus than conventional antibiotics Gentamycin and Nalidixic acid. Nalidixic acid gives no inhibitory zone against E-coli. The results showed that diameters of  inhibited zones of different concentration SnO2 nanoparticles  against Staphylococcus Aureus presented good antibacterial performance than Escherichia coli. As the amount of the nanoparticles in the solution decreases, antibacterial activity decreases.SnO2 nanoparticles show almost equivalent sensitivity  like the  conventional Gentamycin antibiotics and Nalidixic Acid antibiotic shows no resistance in E. Coli. SnO2 nanoparticles show more sensitivity than the  conventional Gentamycin and Nalidixic Acid antibiotics in S. Aureus.

References

[1] Fauci A S, Touchette N A and Folkers G K.Emerg. Infect. Dis., vol.11,pp. 519–25, 2005.
[2] Sondi I and Salopek-Sondi B.J. Colloid Interface Sci., vol.275, pp.177–82, 2004.
[3] BirringerR.Mater. Sci. Eng.,vol. 117, pp. 33–43, 1989.
[4] Wright J B, Lam K, Hansen D and Burrell R E.Am. J. Infect. Control, vol. 27, pp. 344–50, 1999.
[5] Daoud WA, Xin J H and Zhang Y H. Surf. Sci., vol. 599, pp.69–75, 2005.
[6] Ghule K, Ghule A V, Chen B J and Ling Y C.Green Chem., vol.8, pp.1034–41, 2006.
[7] Makhluf S, Dror R, Nitzan Y, Abramovich Y, Jelinek R and Gedanken A. Adv. Funct. Mater.,vol. 15, pp.1708–15,2005.
[8] Qi L, Xu Z, Jiang X, Hu C and Zou X. Carbohydr. Res., vol. 339, pp. 2693–700, 2004.
[9] Esteban-Cubillo A, Pecharroman C, Aguilar E, Santaren J and Moya J S.J. Mater. Sci., vol.41, pp. 5208–12, 2006.
[10] Guo Y, Zhao J, Yu K, Liu Y, Wang Z and Zhang H. Chem. J. Chin. U., vol. 26, pp. 209–12, 2005.
[11] Morones J R, Elechiguerra J L, Camacho A, Holt K, Kouri J B, Ram´?rez J T and Yacaman M J.Nanotechnology, vol.16, pp.2346–53, 2005.
[12] Taylor P L, Ussher A L and Burrell R E. Biomaterials, vol. 26, pp.7221–9, 2005.
[13] Chambers C W, Proctor C M and Kabler P W.J. Am. Water Works Assoc.,vol.54, pp.208–16, 1962.
[14] Berger T J, Spadaro J A, Bierman R, Chapin S E and Becker R O. Antimicrob. Agents Chemother, vol.10, pp. 856–60, 1976.
[15]. Shannon MA, Bohn PW, Elimelech M, Georgiadis JG, Marinas BJ, Mayes AM. “Science and technology for water purification in the coming decades”.Nature,vol. 452, (7185), pp. 301–10, 2008.
[16]. US Environmental Protection Agency, National Primary Drink¬ing Water Regulations: Stage 2 Disinfectants and Disinfection Byproducts Rule; Final Rule. Federal Register, vol. 71, pp. 387–493, 2006.
[17]. Albrecht MA, Evans CW, Raston CL. “Green chemistry and the health implications of nanoparticles.”Green Chem., vol. 8(5), pp. 417–32, 2006.
[18]. Diallo MS, Savage N. “Nanoparticles and water quality.”J Nanopart Res., vol. 7(4-5), pp. 325–30, 2005.
[19].Yiannikouris A, Francois J, Poughon L, Dussap CG, Bertin G, Jemi¬net G, et al. “Alkali extraction of beta-d-glucans from Saccharomy¬ces cerevisiae cell wall and study of their adsorptive properties toward zearalenone.”J Agric Food Chem., vol. 52(11), pp. 3666–73, 2004.
[20].Seven O, Dindar B, Aydemir S, Metin D, Ozinel MA, Icli S. “Solar photocatalytic disinfection of a group of bacteria and fungi aqueous suspensions with TiO2, ZnO and Sahara desert dust.”J Photochem Photobiol A Chem., vol. 165(1-3), pp. 103–7, 2004.
[21]. Erkan A, Bakir U, Karakas G. “Photocatalytic microbial inactiva¬tion over Pd doped SnO2 and TiO2 thin films.”J Photochem Photo¬biol A Chem.,vol. 184(3), pp. 313–21, 2006.
[22]. Tatsuyama C, Ichimura S. “Electrical and Optical Properties of GaSe-SnO2 Heterojunctions.”Japanese J Appl Phys ., vol.15(5), pp. 843–7, 1976.
[23]. Idota Y, Kubota T, Matsufuji A. “Tin-Based Amorphous Ox¬ide: A High-Capacity Lithium-Ion-Storage Material.”Science, vol. 276(5317), pp. 1395–7, 1997.
[24]. Das S, Kar S, Chaudhuri S. “Optical properties of SnO[sub 2] nanoparticles and nanorods synthesized by solvothermal pro¬cess.”J Appl Phys., vol. 99(11), pp. 114303–10, 2006.
[25]. Göpel W, Schierbaum KD. “SnO2 sensors: current status and fu¬ture prospects.”Sens Actuators B., vol. 26(1-3), pp. 1–12, 1995.
[26]. Zhang G, Liu M. “Effect of particle size and dopant on properties of SnO2-based gas sensors.”Sens Actuators B, vol. 69(1-2), pp. 144–52, 2000.
[27]. Y. Todaka, M. Nakamura, S. Hattori, K. Tsuchiya, and M. Umemoto. “Synthesis of ferrite nanoparticles by mechanochemical processing using a ball mill.”Mat. Trans., vol. 44, pp. 277–284, 2003.
[28]. Krummenacker M and Lewis J (ed).“Prospects in nanotechnology”.Proc. 1st Gen. Conf. on Nanotechnology: Development, Applications, and Opportunities (New York: Wiley), 1995.

Downloads

Published

2018-08-31

How to Cite

Khanom, R., Parveen, S., & Hasan, M. (2018). Antimicrobial Activity of SnO2 Nanoparticles against Escherichia Coli and Staphylococcus Aureus and Conventional Antibiotics. American Scientific Research Journal for Engineering, Technology, and Sciences, 46(1), 111–121. Retrieved from https://asrjetsjournal.org/index.php/American_Scientific_Journal/article/view/4197

Issue

Section

Articles