Determination of Reactive Properties of a Series of Mono-Functionalized Bis-tetrathiafulvalene Employing DFT Calculations

Authors

  • Amel Bendjeddou Laboratory of Aquatic and Terrestrial Ecosystems, Org. and Bioorg. Chem. Group, University of Mohamed-Cherif Messaadia, Souk Ahras, 41000, Algeria
  • Tahar Abbaz Laboratory of Aquatic and Terrestrial Ecosystems, Org. and Bioorg. Chem. Group, University of Mohamed-Cherif Messaadia, Souk Ahras, 41000, Algeria
  • Abdelkrim Gouasmia Laboratory of Organic Materials and Heterochemistry, University of Larbi Tebessi, Tebessa, 12000, Algeria
  • Didier Villemin Laboratory of Molecular and Thio-Organic Chemistry, UMR CNRS 6507, INC3M, FR 3038, Labex EMC3, ensicaen & University of Caen, Caen 14050, France

Keywords:

Tetrathiafulvalenes, density functional theory, computational chemistry, electronic structure, quantum chemical calculations.

Abstract

Density functional Theory (DFT) calculations at the B3LYP/6-31G (d,p) level of theory are carried out to investigate the equilibrium geometry of the novel compounds 3(a-e). Moreover, The Molecular electrostatic Potential (MEP) analysis reveals the sites for electrophilic attack and nucleophilic reactions within the molecules. Additionally, the reactivity and reactive site within the mono-functionalized bis-tetrathiafulvalenes, dipole moment, theoretical study of the electronic structure, nonlinear optical properties (NLO), and natural bonding orbital (NBO) analysis are performed and discussed.

References

[1] Wudl F, Wobschall D, Hufnagel E J. Electrical conductivity by the bis(1,3-dithiole)-bis(1,3-dithiolium) system. J. Am. Chem. Soc. 94: 670-672; 1972.
[2] Ferraris J, Cowan D O, Walatka VV, Perlstein JH. Electron transfer in a new highly conducting donor-acceptor complex. J. Am. Chem. Soc. 95: 948-949; 1973.
[3] Torrent MM, Durkut M, Hadley P, Ribas X, Rovira C. High Mobility of Dithiophene-Tetrathiafulvalene Single-Crystal Organic Field Effect Transistors. J. Am. Chem. Soc. 126: 984-985; 2004.
[4] Bendikov M, Wudl F, Perepichka DF. Tetrathiafulvalenes, Oligoacenenes, and Their Buckminsterfullerene Derivatives:? The Brick and Mortar of Organic Electronics. Chem. Rev. 104: 4891-4945; 2004.
[5] Hou Y, Chen Y, Liu Q, Yang M, Wan X, Yin S, Yu A. A Novel Tetrathiafulvalene- (TTF-) Fused Poly(aryleneethynylene) with an Acceptor Main Chain and Donor Side Chains: Intramolecular Charge Transfer (CT), Stacking Structure, and Photovoltaic Property. Macromolecules. 41: 3114-3119; 2008.
[6] Kanato H, Narutaki M, Takimiya K, Otsubo T, Harima Y. Synthesis and Photovoltaic Properties of Tetrathiafulvalene-Oligothiophene-Fullerene Triads. Chem. Lett. 35: 668-669; 2006.
[7] Yamada J, Akutsu H, Nishikawa H, Kikuchi K. New trends in the synthesis of ?-electron donors for molecular conductors and superconductors. Chem. Rev. 104: 5057-5083; 2004.
[8] Mori H. Materials Viewpoint of Organic Superconductors. J. Phys. Soc. Jpn. 75: 051003; 2006.
[9] Mulliken RS. Molecular Compounds and their Spectra. J. Am. Chem. Soc. 74: 811-824; 1952.
[10] Kobayashi A, Fujiwara E, Kobayashi H. Single-Component Molecular Metals with Extended-TTF Dithiolate Ligands. Chem. Rev. 104: 5243-5264; 2004.
[11] Zhang Y, Guo ZJ, You XZ. Hydrolysis Theory for Cisplatin and Its Analogues Based on Density Functional Studies. J. Am. Chem. Soc. 123: 9378-9387; 2001.
[12] Proft FD, Geerlings P. Conceptual and Computational DFT in the Study of Aromaticity. Chem. Rev. 101: 1451-1464; 2001.
[13] Fitzgerald G, Andzelm J. Chemical applications of density functional theory: comparison to experiment, Hartree-Fock, and perturbation theory. J. Phys. Chem. 95: 10531-10534; 1991.
[14] Tanak H. Crystal Structure, Spectroscopy, and Quantum Chemical. Int. J. Quant. Chem. 112: 2392-2402; 2012.
[15] Gupte SS, Marcano A, Pradhan RD, Desai CF, Melikechi J. Pump-probe thermal lens near-infrared spectroscopy and Z-scan study of zinc (tris) thiourea sulfate. J. Appl. Phys. 89: 4939-4943; 2001.
[16] Karna SP. (Ed.), Electronic and Nonlinear Optical Materials:? The Role of Theory and Modeling. J. Phys. Chem. A. 104: 4671-4673; 2000.
[17] Carcel C, Kaboub L, Gouasmia AK, Fabre JM. Synthesis and redox properties of several new oligoTTF containing functional spacer. Synthetic Metals. 156: 1271-1279; 2006.
[18] Binet L, Fabre JM. Synthesis of New Functionalized ?-Electron Donors: Primary Hydroxy and Primary Amino Multisulfur Tetrathiafulvalenes. Synthesis. 10: 1179 -1184; 1997.
[19] Blanchard P, Salle M, Duguay G, Jubault M, Gorgues A. A simple 1,5 ? 1,3-diketone rearrangement. Tetrahedron Lett. 33: 2685-2688; 1992.
[20] Moore AJ, Bryce MR, Batsanov AS, Cole JC, Howard JAK. Functionalised Trimethyltetrathiafulvalene (TriMe-TTF) Derivatives via Reactions of Trimethyl-tetrathiafulvalenyllithium with Electrophiles: X-ray Crystal Structures of Benzoyl-TriMe-TTF and Benzoylthio-TriMe-TTF. Synthesis. 6: 675-682; 1995.
[21] Heuze K, Fourmigue M, Batail P. The crystal chemistry of amide-functionalized ethylenedithio-tetrathiafulvalenes: EDT-TTF-CONRR? (R, R? = H, Me). J. Mater. Chem. 9: 2373-2379; 1999.
[22] Heuze K, Meziere C, Fourmigue M, Batail P, Coulon C, Canadell E, Auban-Senzier P, Jerome D. Directing the Structures and Collective Electronic Properties of Organic Conductors: The Interplay of ?-Overlap Interactions and Hydrogen Bonds. Chem. Eur. J. 5: 2971; 1999.
[23] Heuze K, Fourmigue M, Batail P, Canadell E, Auban-Senzier P. An Efficient, Redox-Enhanced Pair of Hydrogen-Bond Tweezers for Chloride Anion Recognition, a Key Synthon in the Construction of a Novel Type of Organic Metal based on the Secondary Amide-Functionalized Ethylenedithiotetrathiafulvalene, ?-(EDT-TTF-CONHMe)2[Cl•H2O]. Chem. Mater. 12: 1898-1904; 2000.
[24] Politzer P, Laurence PR, Jayasuriya K. Molecular electrostatic potentials: an effective tool for the elucidation of biochemical phenomena, in: J. McKinney (Ed.), Structure Activity Correlation in Mechanism Studies and Predictive Toxicology, Environ. Health Perspect. 61: 191-202; 1985.
[25] Politzer P, Lane P. A computational study of some nitrofluoromethanes. Struct. Chem. 1: 159-164; 1990.
[26] Scrocco E., Tomasi J., Electronic Molecular Structure, Reactivity and Intermolecular Forces: An Euristic Interpretation by Means of Electrostatic Molecular Potentials. Adv. Quantum Chem. 11: 115-193; 1979.
[27] Luque FJ, Lopez JM, Orozco M. Perspective on “electrostatic interactions of a solute with a continuum. A direct utilization of ab initio molecular potentials for the prevision of solvent effects”, Theor. Chem. Acc. 103: 343-345; 2000.
[28] Politzer P, Truhlar DG. Chemical Applications of Atomic and Molecular Electrostatic Potentials, Plenum Press, New York, 1981.
[29] Bader RFW. A quantum theory of molecular structure and its applications, Chem. Rev. 91: 893-928; 1990.
[30] Murray JS, Sen K. Molecular Electrostatic Potentials. Concepts and Applications, Elsevier, Amsterdam, 1996.
[31] Seminario JM. Recent Development and Applications of Modern Density Functional Theory. Elsevier. 4: 800-806; 1996.
[32] Yesilkayanak T, Binzet G, Mehmet Emen F, Florke U, Kulcu N, Arslan H. Eur. J. Chem. 1: 1-5; 2010.
[33] Belletete M., Morin J.F., Leclerc M., Durocher G., A Theoretical, Spectroscopic, and Photophysical Study of 2,7-Carbazolenevinylene-Based Conjugated Derivatives. J. Phys. Chem. A. 109: 6953-6959; 2005.
[34] Zhenming D, Heping S, Yufang L, Diansheng L, Bo L. Experimental and theoretical study of 10-methoxy-2-phenylbenzo[h]quinoline. Spectrochim. Acta A. 78: 1143-1148; 2011.
[35] Parr RG, Szentpaly LV, Liu SJ. Electrophilicity Index. Am. Chem. Soc. 121: 1922-1924; 1999.
[36] Chaltraj PK, Maiti B, Sarbar UJ. Philicity:? A Unified Treatment of Chemical Reactivity and Selectivity. J. Phys. Chem. A. 107: 4973-4975; 2003.
[37] Parr RG,Donnelly RA, Levy M, Palke WE. Am. Chem. Soc. 68: 3801-3807; 1978.
[38] Puzyn T, Leszczynski J, Cronin MTD. Recent Advances in QSAR Studies, Springer, New York, NY, USA, 2010. 30-41.
[39] Garrido AP, Helguera AM, Guillén AA, Cordeiro MNDS, Escudero AG. Convenient QSAR model for predicting the complexation of structurally diverse compounds with ?-cyclodextrins. Bioorgan. Med. Chem. 17: 896-904; 2009.
[40] Parthasarathi R, Padmanabhan J, Subramanian V, Sarkar U, Maiti B, Chattraj PK. Toxicity analysis of benzidine through chemical reactivity and selectivity profiles: a DFT approach. Int. Electron. J. Mol. Des. 2: 798-813; 2003.
[41] Srivastava A, Rawat P, Tandon P, Singh RN. A computational study on conformational geometries, chemical reactivity and inhibitor property of an alkaloid bicuculline with ?-aminobutyric acid (GABA) by DFT. Comp. Theor. Chem. 993: 80-89; 2012.
[42] Singh RN, Baboo V, Rawat P, Kumar A, Verma D. Molecular structure, spectral studies, intra and intermolecular interactions analyses in a novel ethyl 4-[3-(2-chloro-phenyl)-acryloyl]-3,5-dimethyl-1H-pyrrole-2-carboxylate and its dimer: A combined DFT and AIM approach. Spectrochim. Acta Part A. 94: 288-301; 2012.
[43] Singh RN, Kumar A, Tiwari RK, Rawat P, Manohar R. Synthesis, molecular structure, and spectral analyses of ethyl-4-[(2,4-dinitrophenyl)-hydrazonomethyl]-3,5-dimethyl-1H-pyrrole-2-carboxylate . Struct. Chem. 24: 713-724; 2013.
[44] Schwenke DW, Truhlar DG. Systematic study of basis set superposition errors in the calculated interaction energy of two HF molecules. J. Chem. Phys. 82: 2418-2426; 1985.
[45] Gutowski M, RakPawel J, Blazejowski D. Theoretical Studies on the Geometry, Thermochemistry, Vibrational Spectroscopy, and Charge Distribution in TiX62- (X = F, Cl, Br, I). Coulombic Energy in hexahalogenotitanate Lattices. J. Chem. Phys. 98: 6280-6286; 1994.
[46] Shen YR. The Principles of Non-linear Optics, Wiley, New York, 1984.
[47] Eaton DF. Nonlinear optical materials. Science. 253: 281-287; 1991.
[48] Kolinsky PV. New materials and their characterization for photonic device applications. Opt. Eng. 31: 1676-1684; 1992.
[49] Kleinman DA. Nonlinear Dielectric Polarization in Optical Media. Phys. Rev. 126: 1977-1979; 1962.
[50] Karna SP, Prasad PN, Dupuis M. Nonlinear optical properties of p-nitroaniline: an ab initio time-dependent coupled perturbed Hartree-Fock study. J. Chem. Phys. 94: 1171-1181; 1991.
[51] Adant C, Dupuis M, Bredas JL. Ab initio study of the nonlinear optical properties of urea: Electron correlation and dispersion effects. Int. J. Quantum Chem. 56: 497-507; 2004.

Downloads

Published

2017-04-03

How to Cite

Bendjeddou, A., Abbaz, T., Gouasmia, A., & Villemin, D. (2017). Determination of Reactive Properties of a Series of Mono-Functionalized Bis-tetrathiafulvalene Employing DFT Calculations. American Scientific Research Journal for Engineering, Technology, and Sciences, 29(1), 308–326. Retrieved from https://asrjetsjournal.org/index.php/American_Scientific_Journal/article/view/2802

Issue

Section

Articles