New Bayesian Lasso Composite Quantile Regression

Fadel Hamid Hadi Alhusseini

Abstract


In this paper, we propose a new Bayesian lasso inference scheme for variable selection in composite quantile regression model (C Quantile Reg). The suggested approach is to construct a hierarchical structure within the Gibbs sampling under the assumption that the residual term comes from skew Laplace distribution (asymmetric Laplace distribution) and  assign scale mixture uniform (SMU) as prior distributions on the coefficients of composite quantile regression model. Our proposed method was compared to some other existing methods by testing the performance of these methods through simulation studies and real data examples.


Keywords


New Bayesian Lasso; Posterior distributions; composite Quantile regression; Scale mixture of uniform.

Full Text:

PDF

References


- Alhamzawi. R., & Yu, K. “Bayesian Lasso-mixed quantile regression” Journal of Statistical Computation and Simulation, 84(4),pp. 868-880, 2014.

- Alhamzawi, Rahim. “Bayesian elastic net Tobit quantile regression. ”Communications in Statistics-Simulation and Computation” 45(7),pp. 2409-2427, 2016

- Alhamzawi, R. “Model selection in quantile regression models. ”Journal of Applied Statistics, 42(2), pp.445-458, (2015).

- Alhamzawi, R. Yu, K., & Benoit, D. F. “Bayesian adaptive Lasso quantile regression. ” Statistical Modelling, 12(3), pp.279-297, (2012).

- Benoit, D. F., Alhamzawi, R. and Yu, K. “Bayesian lasso binary quantile regression. ” Computational Statistics, 28(6): pp.2861–2873. 2, (2013).

- Bradic, J., Fan, J., & Wang, W. “Penalized composite quasi‐likelihood for ultrahigh dimensional variable selection. ” Journal of the Royal Statistical Society: Series B (Statistical Methodology), 73(3), pp.325-349,(2011).

- Candes, E., & TaoT. “The Dantzig selector: Statistical estimation when p is much larger than. ” The Annals of Statistics, pp2313-2351,(2007).

- Cade, B. S., & Noon, B. R. “A gentle introduction to quantile regression for ecologists. ” Frontiers in Ecology and the Environment, 1(8), pp.412-420,(2003).

- Huang, H., & Chen, Z. “Bayesian composite quantile regression. ”.Journal of Statistical Computation and Simulation, 85(18), pp.3744-3754,(2015).

- Kostov, P., & Davidova, S. A. “quantile regression analysis of the effect of farmers’ attitudes and perceptions on market participation.” Journal of Agricultural Economics, 64(1), pp.112-132, (2013).

- Koenker, R., & Bassett Jr, G. “Regression quantiles.” Econometrica : journal of the Econometric Society, pp.33-50, (1978).

- Koenker, R., & Geling, O. “Reappraising medfly longevity.” a quantile regression survival analysis. Journal of the American Statistical Association,96(454),pp. 458-468 ,(2001).

- Koenker, R. W., & d'Orey, V. “ Algorithm AS 229: Computing regression quantiles.” Journal of the Royal Statistical Society. Series C (Applied Statistics), 36(3), pp.383-393,(1987).

- Koenker, R. W., & d'Orey, V. “Algorithm AS 229: Computing regression quantiles.” Journal of the Royal Statistical Society. Series C (Applied Statistics), 36(3), pp.383-393,(1987).

- Koenker, R. "Quantile regression" . Cambridge university press: (2005). (No. 38).

-Kozumi, Hideo, and Genya Kobayashi. "Gibbs sampling methods for Bayesian quantile regression." Journal of statistical computation and simulation 81, no. 11 ,pp.1565-1578. (2011).

- Li, Y. and Zhu, J . “L1-norm quantile regression. ” Journal of Computational and Graphical Statistics, 17(1). pp. 163-185., (2008).

- Li, Q., Xi, R., Lin, N., et al. “Bayesian regularized quantile regression. ” Bayesian Analysis, 5(3);pp. 533–556. (2010).

- Mallick, H., & Yi, N. “A new Bayesian lasso. ” STATISTICS AND ITS INTERFACE, 7(4),pp. 571-582, (2014).

- Park, T., & Casella, G. “The Bayesian lasso. ” Journal of the American Statistical Association, 103(482), pp.681-686,(2008).

- Sun, W., Ibrahim, J. G., and Zou, F. “Genome wide multiple-loci mapping in experimental crosses by iterative adaptive penalized regression. ” Genetics, 185(1),pp.349–359. 2 , (2010).

- Stamey, T. A., Kabalin, J. N., McNeal, J. E., Johnstone, I. M., Freiha, F., Redwine, E. A., & Yang, N. . “Prostate specific antigen in the diagnosis and treatment of adenocarcinoma of the prostate. ” II. Radical prostatectomy treated patients. ”The Journal of urology, 141(5),pp. 1076-1083,(1989).

- Tibshirani, R. “Regression shrinkage and selection via the lasso. ” .Journal of the Royal Statistical Society. Series B (Methodological),pp. 267-288, (1996).

- Tibshirani, R. “Regression shrinkage and selection via the lasso. ” a retrospective". Journal of the Royal Statistical Society: Series B (Statistical Methodology), 73(3), pp.273-282,(2011).

- Wang, H. and He, X . “Detecting differential expressions in GeneChip microarray studies: a quantile approach. ” Journal of the American Statistical Association,102(477);pp. 104–112. 1, . (2007).

- Wei, Y., Pere, A., Koenker, R., and He, X . “Quantile regression methods for reference growth charts.” .Statistics in medicine, 25(8); pp.1369–1382, . (2006).

-Wu, Y. and Liu, Y. “Variable selection in quantile regression.”Statistica Sinica,19(2),pp. 801. 2, (2009).

-Yu, K., & Moyeed, R. A. "Bayesian quantile regression. “ Statistics & Probability Letters, 54(4),pp. 437-447 ,(2001).

- Zou, H. "The adaptive lasso and its oracle properties. “ Journal of the American statistical association, 101(476), pp.1418-1429 ,(2006).

- Zou, H., & Yuan, M , “Composite quantile regression and the oracle model selection theory. ” The Annals of Statistics, pp. 1108-1126, . (2008).


Refbacks

  • There are currently no refbacks.


 
  
 

 

  


About ASRJETS | Privacy PolicyTerms & Conditions | Contact Us | DisclaimerFAQs 

ASRJETS is published by (GSSRR).