Tracking Solar Flares Using the SuperSID Monitor

Authors

  • Gbenga Adesunloro Physics Unit, Department of Science Technology, Federal Polytechnic, P.M.B. 5351, Ado-Ekiti, 360001, Nigeria
  • K.A.J Gbadegesin aPhysics Unit, Department of Science Technology, Federal Polytechnic, P.M.B. 5351, Ado-Ekiti, 360001, Nigeria

Keywords:

Sudden Ionospheric Disturbance, Solar Flares, SuperSID Monitor.

Abstract

Sudden Ionospheric Disturbances are the immediate effects of solar flares, which impact the earth, and affect the upper atmospheric layers used for telecommunications. The aim of this project was to research, design and build a super sudden Ionospheric Disturbance Monitor for amplitude and phase perturbations occurring in the D-layer of the Ionosphere. For the design and implementation of this monitor Stanford University (NASA) and Society for Amateur Radio Astronomers (SARA) provided the SuperSID distribution pre-Amp, antenna wire and a RG 58 Coax Cable.  During the design phase of the super SID Monitor a vertical loop antenna with dimension   was constructed as a means to transfer energy from free space into a guided wave into the receiver; a VLF receiver from SARA was attached with the kit, which would incorporate all the signal processing and finally a data-logging device/software to act as an interface between the analogue natural events and the digital interface to record data to a PC. At the implementation stage the constructed balanced loop antenna was tested for its applicability with VLF receiver to process the signals from distant transmitters as a means to observe the propagation of the transmitted VLF signals received by the system. Observations were made through graphical representations of the VLF signatures on the computer by using the data-logging interface. Summary of the global data from GOES-13 which the local data generated by the receiver used for this project revealed an unusual spikes in the region of a low Solar flares on 23rd May, 19th and 21st June, 2015. Solar scientists classified it as an M-flare, in this case an M5.6-class flare. The flare peaked at about 6pm. The flare was identified to come from Sunspot AR2257. A continuous system for long term monitoring is strongly recommended for this work.

References

[1] Andriets E. S., Kondrashova N. N. Semiempirical Photospheric Models Of A Solar Flare On May 28, 2012..vol 55. Pp 871-878, doi 10.1016/j.asr.2014.07.026
[2] Arregui I., Asensio Ramos A.. Determination Of The Cross-field Density Structuring In Coronal Waveguides Using The Damping Of Transverse Waves. Astronomy And Astrophysics. vol 565. pp A78, 2014. doi 10.1051/0004-6361/201423536. URL: http://adsabs.harvard.edu/abs/2014A&A...565A..78A
[3] Aschwanden M. J., A Macroscopic Description Of A Generalized Self-organized Criticality System: Astrophysical Applications. Astrophysical Journal. vol 782. pp 54. doi 10.1088/0004-637X/782/1/54. URL: http://adsabs.harvard.edu/abs/2014ApJ...782...54A
[4] Aschwanden M. J., Boerner P. And Ryan D. And Caspi A. And McTiernan J. M. And Warren H. P. Global Energetics Of Solar Flares: II. Thermal Energies. Astrophysical Journal. vol 802. pp 53., 2015. doi 10.1088/0004-637X/802/1/53 URL:http://adsabs.harvard.edu/abs/2015ApJ...802...53A
[5] Asensio Ramos A., Arregui I.. Coronal Loop Physical Parameters From The Analysis Of Multiple Observed Transverse Oscillations. Astronomy And Astrophysics. vol 554. pp A7, 2013 doi 10.1051/0004-6361/201321428.URL: http://adsabs.harvard.edu/abs/2013A&A...554A...7A
[6] Asgari Targhi M., Van Ballegooijen A. A. And Cranmer S. R. And DeLuca E. E. The Spatial And Temporal Dependence Of Coronal Heating By Alfvén Wave Turbulence. Astrophysical Journal. vol 773. pp 111, 2013. doi 10.1088/0004-637X/773/2/111. URL: http://adsabs.harvard.edu/abs/2013ApJ...773..111A
[7] B. O'Dwyer, G. Del Zanna, H. E. Mason. Response Of Hinode XRT To Quiet Sun, Active Region And Flare Plasma. Astronomy And Astrophysics. vol 561. pp A20, 2014. doi 10.1051/0004-6361/201016346. URL: http://adsabs.harvard.edu/abs/2014A&A...561A..20O
[8] Babu A., Coronal Mass Ejections From The Sun - Propagation And Near Earth Effects. . vol . pp 25. 2014. doi. URL: http://adsabs.harvard.edu/abs/2014arXiv1407.4258B
[9] Baker D., Brooks D. H. And Demoulin P. And Yardley S. L. And Van Driel Gesztelyi L. And Long D. M. And Green L. M.. FIP Bias Evolution In A Decaying Active Region. Astrophysical Journal. vol 802. pp 104, 2015. doi 10.1088/0004-637X/802/2/104. URL: http://adsabs.harvard.edu/abs/2015ApJ...802..104B
[10] Bobra M. G., Couvidat S.. Solar Flare Prediction Using SDO/HMI Vector Magnetic Field Data With A Machine-learning Algorithm. Astrophysical Journal. vol 798. pp 135, 2015. doi 10.1088/0004-637X/798/2/135
[11] Bogod V. M., Alissandrakis C. E. And Kaltman T. I. And Tokhchukova S. K.. RATAN-600 Observations Of Small-Scale Structures With High Spectral Resolution. Solar Physics. vol 290. pp 7-20, 2015. doi 10.1007/s11207-014-0526-6. URL: http://adsabs.harvard.edu/abs/2015SoPh..290....7B
[12] Bougher S. W., Pawlowski D. And Bell J. M. And Nelli S. And McDunn T. And Murphy J. R. And Chizek M. And Ridley A. Mars Global Ionosphere-Thermosphere Model: Solar Cycle, Seasonal, And Diurnal Variations Of The Mars Upper Atmosphere. . vol 120. pp 311-342, 2015. doi 10.1002/2014JE004715. URL: http://adsabs.harvard.edu/abs/2015JGRE..120..311B
[13] Brasser R., Wang J. H.. An Updated Estimate Of The Number Of Jupiter-family Comets Using A Simple Fading Law. Astronomy And Astrophysics. vol 573. pp A102, 2015. doi 10.1051/0004-6361/201423687. URL: http://adsabs.harvard.edu/abs/2015A&A...573A.102B
[14] Cargill P., . From Flares To Nanoflares: Magnetic Reconnection On The Sun. Astronomy & Geophysics. vol 54. pp 030003-3, 2013 doi 10.1093/astrogeo/att078. URL: http://adsabs.harvard.edu/abs/2013A&G....54c3.16C
[15] Caspi A., Woods T. N. And Warren H. P. New Observations Of The Solar 0.5-5 KeV Soft X-Ray Spectrum. Astrophysical Journal, Letters. vol 802. pp L2., 2015 doi 10.1088/2041-8205/802/1/L2. URL: http://adsabs.harvard.edu/abs/2015ApJ...802L...2C
[16] Chandra R., Gupta G. R. And Mulay S. And Tripathi D. Sunspot Waves And Triggering Of Homologous Active Region Jets. Monthly Notices Of The RAS. vol 446. pp 3741-3748., 2015. doi 10.1093/mnras/stu2305. URL: http://adsabs.harvard.edu/abs/2015MNRAS.446.3741C
[17] Chen N., Ip W. H. And Innes D.. Flare-Associated Type III Radio Bursts And Dynamics Of The EUV Jet From SDO/AIA And RHESSI Observations. Astrophysical Journal. vol 769. pp 96., 2013. doi 10.1088/0004-637X/769/2/96. URL: http://adsabs.harvard.edu/abs/2013ApJ...769...96C
[18] Chen R., Yang Z. L. And Deng Y. Y.. The Induced Electric Field Distribution In The Solar Atmosphere. Research In Astronomy And Astrophysics. vol 13. pp 729-738, 2013. doi 10.1088/1674-4527/13/6/012. URL: http://adsabs.harvard.edu/abs/2013RAA....13..729C
[19] Chernov G., Fomichev V. And Tan B. And Yan Y. And Tan C. And Fu Q. Dynamics Of Flare Processes And Variety Of The Fine Structure Of Solar Radio Emission Over A Wide Frequency Range Of 30 - 7000 MHz. Solar Physics. vol 290. pp 95-114, 2015 doi 10.1007/s11207-014-0598-3. URL: http://adsabs.harvard.edu/abs/2015SoPh..290...95C
[20] Cheung M. C. M., De Pontieu B. And Tarbell T. D. And Fu Y. And Tian H. And Testa P. And Reeves K. K. And Martinez Sykora J. And Boerner P. And Wulser J. P. And Lemen J. And Title A. M. And Hurlburt N. And Kleint L. And Kankelborg C. And Jaeggli S. And Golub L. And McKillop S. And Saar S. And Carlsson M. And Hansteen V. Homologous Helical Jets: Observations By IRIS, SDO, And Hinode And Magnetic Modeling With Data-Driven Simulations. Astrophysical Journal. vol 801. pp 83. doi 10.1088/0004-637X/801/2/83, 2015. URL: http://adsabs.harvard.edu/abs/2015ApJ...801...83C
[23] Collins, R. E., . Antenna and Radio wave propagation. Mc Graw-Hill Inc. New York., pp 185, 1985
[24] D. F. Ryan, P. C. Chamberlin, R. O. Milligan, P. T. Gallagher. Decay-phase Cooling And Inferred Heating Of M- And X-class Solar Flares. Astrophysical Journal. vol 778. pp 68, 2013 doi 10.1088/0004-637X/778/1/68. URL: http://adsabs.harvard.edu/abs/2013ApJ...778...68R
[25] Dai X., Wang H. And Huang X. And Du Z. And He H. An Improvement On Mass Calculations Of Solar Coronal Mass Ejections Via Polarimetric Reconstruction. Astrophysical Journal. vol 801. pp 39, 2015. doi 10.1088/0004-637X/801/1/39. URL: http://adsabs.harvard.edu/abs/2015ApJ...801...39D
[26] Dalmasse K., Chandra R. And Schmieder B. And Aulanier G. Can We Explain Atypical Solar Flares?. Astronomy And Astrophysics. vol 574. pp A37, 2015. doi 10.1051/0004-6361/201323206. URL: http://adsabs.harvard.edu/abs/2015A&A...574A..37D
[27] Dalmasse K., Chandra R. And Schmieder B. And Aulanier G.. VizieR Online Data Catalog: Solar Flares Movies (Dalmasse+, 2015). . vol 357. pp 49037. Doi. URL: http://adsabs.harvard.edu/abs/2015yCat..35749037D
[28] De La Cruz Rodriguez J., Lofdahl M. G. And Sutterlin P. And Hillberg T. And Rouppe Van Der Voort L.. CRISPRED: A Data Pipeline For The CRISP Imaging Spectropolarimeter. Astronomy And Astrophysics. vol 573. pp A40, 2015 doi 10.1051/0004-6361/201424319. URL: http://adsabs.harvard.edu/abs/2015A&A...573A..40D.
[29] Deborah, S., Research with Space Weather Monitor Data. An unpublished project work presented to Stanford University for International Heliophysical Year (IHY) program, 2007.
[30] Del Zanna G., Tripathi D. And Mason H. And Subramanian S. And O'Dwyer B.. The Evolution Of The Emission Measure Distribution In The Core Of An Active Region. Astronomy And Astrophysics. vol 573. pp A104, 2015 doi 10.1051/0004-6361/201424561. URL: http://adsabs.harvard.edu/abs/2015A&A...573A.104D
[31] Efremov V. I., Parfinenko L. D. And Solov'ev A. A. Identification Of Large-scale Cellular Structures On The Sun Based On The SDO And PSPT Data. Astrophysics And Space Science. vol 356. pp 1-6, 2015 doi 10.1007/s10509-014-2195-1. URL: http://adsabs.harvard.edu/abs/2015Ap&SS.356....1E
[32] Emilio M., Couvidat S. And Bush R. I. And Kuhn J. R. And Scholl I. F. Measuring The Solar Radius From Space During The 2012 Venus Transit. Astrophysical Journal. vol 798. pp 48, 2015. doi 10.1088/0004-637X/798/1/48. URL: http://adsabs.harvard.edu/abs/2015ApJ...798...48E
[33] Fainshtein V. G., Egorov Y. I.. Initiation Of CMEs Associated With Filament Eruption, And The Nature Of CME Related Shocks. . vol 55. pp 798-807, 2015. doi 10.1016/j.asr.2014.05.019. URL: http://adsabs.harvard.edu/abs/2015AdSpR..55..798F
[34] Fainshtein V. G., Zagainova Y. S. On The Occurrence And The Motion Of Fast Impulsive Coronal Mass Ejections Associated With Powerful Flares And Unassociated With Eruptive Filaments. . vol 53. pp 31-46, 2015. doi 10.1134/S0010952515010050. URL: http://adsabs.harvard.edu/abs/2015CosRe..53...31F
[35] Gold, T. and Hoyle, F. Origin of solar flares. Royal Astronomical Society 120, 89, 1960.
[36] Guglielmino S. L., Zuccarello F. And Romano P.. (2014) Penumbral-like Filaments In The Solar Photosphere As A Manifestation Of Flux Emergence. Astrophysical Journal, Letters. vol 786. pp L22. doi 10.1088/2041-8205/786/2/L22.URL: http://adsabs.harvard.edu/abs/2014ApJ...786L..22G
[37] Hudson, H. S. Solar flares, Microflare, Nanoflares and Coronal heating, 133, 357, 2004
[38] Kopp, Lawrence and Rottman, “The total Irradiance Monitor (TIM) Science Results”. Solar Physics 230, 139, 2005.
[39] Mewaldt, R. A., Space Weather Implications of the 20th January, 2005 solar energetic particle event, 410, 50, 2005.
[40] Michael, Z. and John, G. Astronomy. The Cosmic Perspective, John Wily & Son, Inc, New York, 1990.
[41] Okeke, P. N. and Soon, Introductory to Astronomy. SAN Press ltd, Nigeria, 2004.
[42] Onel, H., Mann, G. and Sedimayr, E.. “Propagation of energetic electrons through the Solar Corona and Interplanetary Medium” 463, 1143, 2007.
[43] Otto, S., Beverly, L. and Helen, P. Elementary Astronomy, Oxford University Press, Inc. New York, 1961.
[44] Pam, S., Sun Observer’s guide, Firefly Books U.S.A., 2004.
[45] Space Weather Monitor from http://sid.stanford.edu/databasebrowser/monitors.jsp SWPC Anonymous FTP Server, Indices, Events and Region Data, Solar Event reports-last 90 days from http://www.sec.noaa.gov/ftpmenu/indices/events.html URL: http://adsabs.harvard.edu/abs/2015ApJ...798..135B
[46] Willian, K. H., Astronomy. The Cosmic Journey, Wadsworth Publishing Company Belmont, California, 1987.
[47] Zhang J., Zhang B. And Li T. And Yang S. And Zhang Y. And Li L. And Chen F. And Peter H.. (2015) Coronal Heating By The Interaction Between Emerging Active Regions And The Quiet Sun Observed By The Solar Dynamics Observatory. Astrophysical Journal, Letters. vol 799. pp L27, 2015. doi 10.1088/2041-8205/799/2/L27. URL: http://adsabs.harvard.edu/abs/2015ApJ...799L..27Z
[48] Zhang Y., Tan B. And Karlicky M. And Meszarosova H. And Huang J. And Tan C. And Sim Oes P. J. A.. Solar Radio Bursts With Spectral Fine Structures In Preflares. Astrophysical Journal. vol 799. pp 30, 2015. doi 10.1088/0004-637X/799/1/30. URL: http://adsabs.harvard.edu/abs/2015ApJ...799...30Z
[49] Zheleznyakov, V.V., (1970).”Radio Emission of the Sun and Planets”, Pergamon, Press ltd, London, 1970 Edition.

Downloads

Published

2016-01-01

How to Cite

Adesunloro, G., & Gbadegesin, K. (2016). Tracking Solar Flares Using the SuperSID Monitor. American Scientific Research Journal for Engineering, Technology, and Sciences, 15(1), 96–108. Retrieved from https://asrjetsjournal.org/index.php/American_Scientific_Journal/article/view/1195