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Abstract 

Predicting acoustic environment by analyzing and classifying sound recording of the scene is an emerging 

research area. This paper presents and compares different acoustic scene classification (ASC) methods to 

differentiate between different acoustic environments. In particular, two deep learning techniques of classifica-

tion i.e. Deep Neural Network (DNN) and Convolution Neural Network (CNN) have been applied using a 

combination of Mel-Frequency Cepstral Coefficients (MFCCs) and Log Mel energies as features. DNN and 

CNN are state-of-the-art techniques which are being used widely in speech recognition, computer vision, and 

natural language processing applications. These techniques have recently achieved great success in the field of 

audio classification for various applications. Both techniques have been implemented and tuned by performing a 

variety of experiments with different hyper parameters, hidden layers and units on public benchmark datasets 

provided in the DCASE 2017 challenge. The proposed method uses frame level randomization of the combined 

acoustic features i.e. MFCC and log mel energy, for training of model to achieve higher accuracy with DNN and 

CNN. It has reported higher accuracy than the previous work done on public benchmark datasets provided in the 

DCASE 2017 challenge. It is observed that DNN achieved 83.45% and CNN achieved 83.65% accuracy that is 

higher than the previous work done on public benchmark datasets provided in the DCASE 2017 challenge. 

Keywords: Acoustic scene classification; deep neural networks; convolution neural network; mel energy; 

MFCC. 
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1. Introduction 

When we think about the acoustic scene classification, we refer to the abilities of human or artificial system that 

can perceive the con-text of audio. So, the objective of acoustic scene classification (ASC) is to categorize 

different audio environments to one of the pre-defined classes such as car, cafe, train, park etc. in which that 

audio was recorded. Smart devices can use this technology for contextualization and personalization [1] to fulfill 

the consumer requirements. It offers wide range of applications including context aware services [2], robotic 

navigation [3], surveillance [4], public place monitoring and assistance to enhance performance of audio event 

detection tasks [5]. It may also be used for security services and public place monitoring at common places. 

Another interesting application is the detection of water and gas leakage pipelines and reduces the human efforts 

of manual detection through a very long pipeline. Overview of the system is shown in figure 1. Although, 

several techniques have been proposed as a solution for the audio classification based on its different features 

but still ASC problem is a challenging task for the researchers to dig it out and improve the results. The goal of 

this paper is to use the state-of-the-art deep learning techniques to tackle the ASC problem. The deep learning 

techniques outperformed and offered tremendous results in many other applications [6]. So, with the enhanced 

academic interest and commercial demand of ASC, development of a practical system with high accuracy is 

required. Our proposed methods use the randomized data at frame level to improve the accuracy with the mel 

energy features using the DNN and CNN classification techniques. DCASE 2017 [7] dataset has been used that 

contains recording from several acoustic scenes from different locations. It contains 15 different acoustic scene 

recordings that need to be classified into the respective environment in which it was recorded [7]. Our system 

training is based on MFCC and mel energy features that are used as input for the deep learning techniques. 

These features are the representation of power spectrum of sound signal for very short span of time. The sound 

signal is broken into tiny frames of fixed length specified by the window which has a length of 40ms with 50% 

hop size. For feature extraction, librosa [8] a python library was used. The proposed methodology reported 

significant improvement in the accuracy for the DCASE 2017 challenge task1. The results are better as 

compared to the existing techniques trained with the several features and classifier. The remaining paper is 

divided into the sections as follows. In section 2 we illustrate the background work on ASC. In section 3 and 4 

we discuss the DNN and CNN architectures. In section 5 we elaborate performance of the proposed solutions 

and comparison with existing models. Finally, conclusion and future research challenges will be discussed and 

these can be considered as future research challenges for the researcher’s community. 

2. Related Work  

Acoustic Scene classification is a highly attractive area of research since 2013 from the first challenge of 

DCASE. Researchers applied different machine learning algorithms to classify the acoustic scenes and tried to 

improve the accuracy based on different features. Deep learning techniques for ASC used mel energy, mel 

frequency cepstral coefficients (MFCC) and various other features set to tackle the problem and improve the 

accuracy. Let’s discuss the literature review of DNN first based on different features. Mafra and his colleagues 

[9] used mel log spectrogram as compact features with DNN, CNN and SVM. Xu and his colleagues [11] 

worked on hierarchical learning with the DNN by including taxonomy information in the learning environment 

and proposed two DNN based hierarchical technique to categorize the acoustic scenes. Patiyal and his 
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colleagues [12] used different mechanisms on different features and concluded that DNN perform better than the 

other techniques when trained on the same features. Kong and his colleagues [13] applied Gaussian mixture 

model and DNN on two types of features mel-filter bank with the same bank area and with the same height. It 

was reported that same height bank performs better as compared to the same area bank. Mun and his colleagues 

[14] proposed a bottleneck features using deep neural networks to improve results of audio classification. Now, 

discuss the literature review of CNN for the acoustic scene classification problem with different features. Mun 

and his colleagues [10] achieved top accuracy of 83.3% on the evaluation dataset for acoustic scene 

classification challenge 2017 using convolutional neural network based on log mel-energy and spectrogram 

features. Han and his colleagues [20] got the accuracy of 80.4% using CNN with log-mel energy features. Hertel 

and his colleagues [7] proposed CNN architecture with single label classification for ASC and and multi label 

classification on DCASE 2016 challenge for domestic audio tagging. Santoso and his colleagues [15] used 

MFCC features as input to the network-in-network CNN architecture to classify the audio scenes. Phan and his 

colleagues [17] presented acoustic classification based on label tree embedding (LTE) features using CNN and 

achieved promising results as compared with the baseline system for acoustic classification of DCASE dataset. 

Eghbal-Zadeh and his colleagues [18] proposed 4 techniques for ASC i.e. deep CNN which is based on 

spectrogram features, binaural I-vectors and late fusion of both CNN and I-vector to improve the overall 

accuracy of ASC. Kim and his colleagues [21] did the empirical study to ensemble the deep machine to improve 

performance on ASC. Bae and his colleagues [22] studied the parallel combination of long short-term memory 

(LSTM) and DNN and enhanced accuracy was reported. Application based on CNN getting more popularity 

with the passage of time. The related example to the ASC is music analysis [23], speech recognition [24], robust 

audio event recognition [25] and event detection [26]. In our proposed methodology, we are going to propose 

convolution neural networks and deep neural networks architectures on randomized training data to achieve 

more accurate results as com-pared to the other methods to recognize the acoustic scenes on the DCASE 2017 

dataset. 

 

Figure 1: General overview of the acoustic scene classification system 
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3. DNN Architecture 

DNN is a supervised learning feedforward artificial network used in various applications in image and video 

recognition, automatic speech recognition and it is trained for acoustic scene classification in this paper. It has 

different layers usually an input layer, several hidden layers to form a deep architecture and an output layer 

[11].The dataset used to train the network was taken from DCASE 2017 challenge and it consists of re-cording 

of different audio scenes. The DNN was trained with MFCC features and mel energy features. For the detail 

analysis, we used different layers with varying number of hidden layers and units in each layer. All results of 

analysis are mentioned in the next chapter of results.  The final architecture of DNN consists of 4 hidden layers 

and 2 dropout layers. The first two hidden layers contain 512 neurons and last two contain 1024 neurons. All 

weights are initialized uniformly and optimized with adam optimizer. DNN was trained on 80 log-mel energy 

and 40 MFCC features for batch size of 256 with training epochs of 100. Softmax activation function was used 

to classify the different audio signals. For error function, categorical cross entropy was used to calculate the 

error for multi class prediction. DNN architecture is shown in Figure 2. 

 

Figure 2: Deep Neural Networks  Architecture 

 

4. CNN Architecture 

CNN consists of stack of distinct layers to classify the input into the outputs. Commonly used CNN Layers are 

convolution layer, Max pooling layer and fully connected layer. In convolution layer, filter is convolved with 

the input features. Max pooling do the job of down-sampling the input and fully connected layer connects all 

neuron from previous layer with its every neuron. This architecture used six convolution layers, three pooling 

layer and six regularization layer as shown in Figure 3. First and second Convolution layers have 32 feature 

maps and 3x3 receptive fields with the input shape of 1x10x12. Third and fourth convolution layers have a 

kernel size of 64 feature maps with 3x3 receptive fields. The last two convolution layers have a kernel size of 

128 feature maps with 3x3 receptive fields. The max pooling layers of 2x2 were used to reduce the feature 

resolution. Pooling layer also reduce the invariance, dimensionality by down-sampling the input feature. Max 

pooling layer picks the single maximum value among the block of 2x2. Dropout layer was used as a 

regularization layer to avoid the overfitting by excluding 20% neurons randomly. Now the flatten layer was used 

to convert 2D matrix data into vector form. Its output will be processed by the standard fully connected layers. 

Tow hidden layers, one with 1024 neurons and one with 512 neurons were used to train the network in more 

sophisticated way with linear rectifier activation function. For output, softmax layer was used that give the 

probability of occurrence of each class out of 15 at the output. The input data is trained for 100 epochs with 
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batch size of 256 inputs. The learning rate for the training network was 0.01 and initialized normally. For 

gradient optimization, the adam optimizer was used. 
In
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Figure 3: Convolutional Neural Networks  Architecture 

 

5. Results and Discussion  

In this section, we evaluate the results of proposed architectures on the DCASE 2017 dataset to cope with the 

ASC problem. There are 4680 audio files in the development dataset. One audio file has 500 frames and MFCC 

and log-mel energy features are extracted from each frame. So, by randomizing the data on frame level the 

classifiers learned in a more challenging way. Data randomization with combined acoustic features enhanced the 

accuracy with DNN and CNN as compared to the existing results on ASC task. The proposed system results are 

outperformed on each individual class of the benchmark dataset that contains 15 classes of the acoustic scenes. 

Here, we presented the confusion matrix of the proposed DNN and CNN with the percentage accuracies of each 

class as shown in Figure 4 and 5 respectively.   

Here, we examine the proposed results of DNN and CNN based on MFCC and log mel energy features with the 

results obtained in the past work based on different features on the DCASE dataset for classification of recorded 

audio. Different techniques had been proposed with DNN and CNN and achieved promising results are shown 

in results comparison Table 1 and 2. If we compare and analyze the results on evaluation data set as shown in 

Table 1 and Table 2 for DNN and CNN then It can be concluded that the results achieved by our DNN and CNN 

architectures on randomized data are better than the previous techniques as mentioned in the Tables.  
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Figure 4: Confusion matrix for the proposed DNN with class-wise accuracy. 

 

Figure 5: Confusion matrix for the proposed CNN with class-wise accuracy. 

Table 1: CNN Results Comparison 

Classifier Features Accuracy 
Proposed CNN MFCC, log mel 

energy 
83.65 

CNN [20] log mel energy 83.3% 
CNN ensemble [21] log mel energy 80.4% 
CNN [19] log mel energy 80.3% 
CNN [16] log mel energy 79.9% 
CNN [18] log mel energy 79.6% 
CNN [17] log mel energy 77.7% 
CNN [16] log mel energy 74.8% 
CNN [15] log mel energy 74.1% 
CNN [1] log mel energy 73.8% 
CNN [7] log mel energy 72.6% 

beach bus café car city_c forest_p grocery_s home library metro_s office park resid_area train tram
beach 91% 0% 2% 0% 0% 0% 1% 0% 2% 0% 0% 1% 2% 0% 0%
bus 11% 71% 3% 4% 0% 0% 4% 0% 0% 0% 0% 0% 0% 1% 6%
café_restaurant 10% 0% 83% 0% 0% 0% 2% 0% 1% 1% 0% 0% 1% 0% 1%
car 6% 1% 0% 87% 0% 0% 0% 0% 0% 0% 0% 0% 0% 1% 3%
city_center 5% 1% 0% 0% 90% 0% 0% 0% 0% 0% 0% 1% 3% 0% 0%
forest_path 9% 0% 0% 1% 0% 76% 0% 1% 1% 0% 1% 2% 11% 0% 0%
grocery_store 9% 0% 6% 0% 0% 0% 80% 0% 0% 0% 0% 0% 0% 0% 1%
home 7% 0% 0% 0% 0% 0% 0% 82% 1% 0% 8% 1% 0% 0% 0%
library 13% 0% 1% 0% 0% 1% 0% 4% 75% 1% 4% 0% 1% 0% 0%
metro_station 2% 0% 1% 0% 0% 0% 0% 0% 2% 94% 0% 0% 0% 0% 0%
office 7% 0% 0% 0% 0% 1% 0% 3% 2% 0% 86% 0% 0% 0% 0%
park 9% 0% 0% 0% 2% 0% 1% 0% 1% 0% 0% 83% 5% 0% 0%
residential_area 9% 0% 1% 0% 3% 2% 1% 0% 0% 0% 0% 2% 82% 0% 0%
train 4% 2% 0% 2% 0% 0% 0% 0% 0% 0% 0% 0% 0% 90% 1%
tram 9% 5% 1% 1% 0% 0% 1% 0% 0% 0% 0% 0% 0% 1% 82%

beachbus café car city_c forest_pgrocery_s home librarymetro_s office park resid_ar train tram
beach 90% 0% 1% 0% 1% 0% 1% 1% 1% 0% 0% 2% 3% 1% 0%
bus 10% 77% 1% 3% 0% 0% 1% 0% 0% 0% 0% 0% 0% 1% 6%
café_restaurant 14% 0% 73% 0% 0% 1% 4% 2% 0% 2% 0% 0% 1% 1% 1%
car 6% 1% 0% 77% 0% 0% 0% 0% 0% 0% 0% 0% 0% 2% 12%
city_center 4% 0% 0% 0% 91% 0% 2% 0% 0% 0% 0% 1% 1% 0% 0%
forest_path 3% 0% 1% 1% 1% 89% 0% 0% 1% 1% 1% 2% 1% 0% 0%
grocery_store 9% 0% 2% 0% 0% 1% 85% 2% 0% 0% 0% 0% 0% 0% 1%
home 5% 0% 0% 0% 0% 2% 0% 88% 1% 0% 2% 1% 1% 0% 0%
library 12% 0% 0% 0% 0% 3% 0% 5% 73% 0% 4% 1% 0% 0% 0%
metro_station 2% 1% 1% 0% 1% 0% 0% 0% 1% 89% 0% 2% 0% 2% 0%
office 7% 0% 0% 0% 0% 2% 0% 6% 1% 0% 83% 0% 0% 0% 0%
park 7% 0% 0% 0% 1% 2% 0% 1% 0% 0% 0% 87% 3% 0% 0%
residential_area 10% 0% 0% 0% 4% 5% 0% 1% 0% 0% 0% 4% 75% 0% 0%
train 3% 3% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 91% 3%
tram 7% 2% 1% 0% 0% 0% 1% 0% 0% 0% 0% 0% 0% 2% 87%

Over All Accuracy 83.65%
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Table 2: DNN Results Comparison 

Classifier Features Accuracy 

Proposed DNN MFCC, log mel 

energy 

83.45% 

DNN-GMM [10] MFFC 85.6% 

DNN [14] various 82.3% 

DNN [13] mel energy 81.0% 

DNN [12] MFCC 78.5% 

DNN [11] mel energy 73.3% 

DNN [9] mel energy 73.1% 

6. Conclusions 

In this paper, we implemented acoustic scene classification with convolutional neural networks (CNN) and deep 

neural networks (DNN). Also, it proposed frame level randomization on bench-mark dataset to enhance the 

accuracy further with DNN and CNN on mel energy features and MFCC. It has subtracted the background noise 

using median filter before the features are fed into the training network. It is concluded that the proposed DNN 

and CNN results on acoustic scene classification are better than the baseline system and past work done. The 

reported accuracy of true classification of all 1620 files with DNN and CNN was 83.45%, 83.65% respectively. 
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