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Abstract 

The aim of the work is to study the robust characteristics and performance of four different observers when used 

to estimate the states of underactuated mechanical system (Pendubot). This work include four observation 

techniques for state estimation which are Extended State Observer (ESO), nonlinear extended state observer 
(NESO), Linear Extended State Observer (LESO) and High gain observer (HGO). The Extended State Observer 

is a model independent observer which includes (NESO, LESO and ESO); it is used for state disturbance 

observation beside state observation and it has been applied to many practical applications. HGO has a special 

design of the observer gain that makes it robust to the uncertainties of the nonlinear functions. The effectiveness 
of each observer is evaluated in terms of its tracking speed and the variance of estimation error which is 

produced when the system is subjected to noise, disturbance and uncertainties. The observers performances are 

compared based on simulations using MATLAB package. The simulation results showed that NESO 

outperforms the other observers where it could give better robust characteristics under noise and uncertainty. 

Keywords: Pendubot; ESO; NESO; LESO; HGO. 

1. Introduction 

The state observers have shown their effectiveness in different applications of many dynamical systems such as 

detecting, regulation, fault diagnosis, system monitoring, and failures identifying. The main drawback usually 

reported for most observers is their dependence on mathematical model of system.  
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Therefore, the design of observers have faced critical challenges in practical applications due to the presence of 
nonlinearities, disturbances and dynamic uncertainties. Thus, obtaining high-performance robust observer 
design was the target of many researchers. In the last two decades, several advanced observer design techniques 

have been proposed like high gain observers (HGOs), sliding mode observers (SMO), disturbance observers 

(DO), extended state observer (ESO), nonlinear extended state observer (NLESO) and linear extended state 

observer (LESO) [ 1, 2]. ESO has been firstly proposed by Huang and Han and it was the basic element of 
Active Rejection Control (ADRC) which recently found numerous applications in different engineering fields 

[3]. One may summarize the most powerful features of ESO: 

• It can efficiently estimate disturbances, uncertainties and sensor noise.  

• It can estimate both uncertainties and disturbances by lumping them as a total disturbance. 

• ESO has a simple structure, and it can estimate unmolded dynamics precisely in many cases. 

•  ESO is used in the control system to estimate and compensate disturbances via a feed-forward 

cancellation technique. 

• ESO can be extended to estimate uncertainties and disturbances for multi-input–multi-output (MIMO) 

systems as well.  

Then, Gao had proposed a class of linear ESOs (LESO) and provided guidance on how to choose the optimal 

parameters in the controller design [4]. A class of nonlinear extended state observers (NESO) was proposed by 
J. Han [5] in 1995 as a unique observer design. It is rather independent of a mathematical model of the plants, 

thus achieving robustness. It was tested and verified in key industrial control problems [6].  

A high-gain observer (HGO) was firstly proposed by Khalil and Esfandiari for output feedback control design. It 

is characterized by its ability to estimate the unmeasured states robustly while asymptotically attenuating the 

disturbances. Since then it has been used in solving many nonlinear system problems [7].  

Pendubot has been taken as a case study for observers to be tested. The Pendubot control problem is to swing it 

up to its vertical unstable equilibrium point (where the two links are in the upright position), and then balance it 
at that point [8]. for the observation to be applicable, a simple LQR control is used for Pendubot. This would 

stabilize the unstable state when the two links is at neighborhood of the vertical position; the position nearby the 

observation is performed [9].  

2. Pendubot Model 

The pendubot is shown in Figure (1). The first link is displaced with a given θ1 while the second link displaced 
with an angle of θ2. The initial points are θ1 = −𝜋𝜋

2�  and θ2 = 0 at the downward position. 

One can establish the equations governing the dynamic model of pendubot as follows [10]: 

[a1 + a2 + 2 a3  cosθ2] θ̈1 + [a2 + a3  cosθ2] θ̈2 − 2 a3  sinθ2  θ̇1 θ̇2 − a3  sinθ2  θ̇2
2

− (−g a4 cosθ1 − g a5 cos(θ1 + θ2)) = τ                                                                                   (1) 
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[a2 + a3  cosθ2] θ̈1 + a2 θ̈2 − a3  sinθ2 θ̇1 θ̇2 − �−a3  sinθ2  θ̇1
2 − a3  sinθ2 θ̇1 θ̇2 − g a5 cos(θ1 + θ2)�

= 0                                                                                                            (2) 

and  

a1 = J1 + m1 r12m2 l1
2, a2 = J2 + m2 r22 , a3 = m2 l1 r2, a4 = m1 r1 + m2 l1 , a5 = m2 r2. 

where θ1 and θ2 are the angular positons of two links respectively, θ̇1and θ̇2 are the angular velocities of the 

two links respectively, θ̈1 and θ̈2 are the angular acceleration of the two links respectively, l1 and l2 are the total 

length of the two links respectively, J1 and J2  are the total moment of inertia of the two links respectively, m1 

and m2 are the total weight of both links respectively, r1 and r2 are the distance from the axis of rotation to the 

center of gravity of the two links respectively, τ is the input torque to the system and 𝑔𝑔 is the gravity. 

 

Figure 1: Simplified model of the Pendubot system. 

   Setting the state variables 𝑥𝑥1 = θ1, 𝑥𝑥2 = θ̇1, 𝑥𝑥3 = θ2 and 𝑥𝑥4 = θ̇2, the compact form of state space for the 

linearized system, around up-right position at which (θ1, θ̇1,θ2, θ̇2) = (𝜋𝜋 2⁄ ,0,0,0), can be given as [10], where 𝐴𝐴 

and 𝐵𝐵 matrices are found using Jacobian [10]. 
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where 

𝜕𝜕𝑓𝑓2
𝜕𝜕𝜃𝜃2

= 𝜕𝜕𝑓𝑓2
𝜕𝜕𝜃𝜃4

=  𝜕𝜕𝑓𝑓3
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𝜕𝜕𝜃𝜃4

= 𝜕𝜕𝑓𝑓3
𝜕𝜕𝜃𝜃1

= 0  
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𝜕𝜕𝑓𝑓1
𝜕𝜕𝜃𝜃1

= 𝜕𝜕𝑓𝑓3
𝜕𝜕𝜃𝜃3

= 𝜕𝜕𝑓𝑓1
𝜕𝜕𝜏𝜏

= 𝜕𝜕𝑓𝑓3
𝜕𝜕𝜏𝜏

= 𝜕𝜕𝑓𝑓1
𝜕𝜕𝜃𝜃3

= 𝜕𝜕𝑓𝑓1
𝜕𝜕𝜃𝜃4

= 0  

𝜕𝜕𝑓𝑓2
𝜕𝜕𝜃𝜃1

= (𝑎𝑎2𝑎𝑎4−𝑎𝑎3𝑎𝑎5) 𝑔𝑔
𝑎𝑎1𝑎𝑎2−𝑎𝑎32

 , 𝜕𝜕𝑓𝑓2
𝜕𝜕𝜃𝜃3

= −𝑎𝑎3𝑎𝑎5 𝑔𝑔
𝑎𝑎1𝑎𝑎2−𝑎𝑎32

 , 𝜕𝜕𝑓𝑓4
𝜕𝜕𝜃𝜃3

= 𝑎𝑎5 𝑔𝑔 (𝑎𝑎1+𝑎𝑎3)
𝑎𝑎1𝑎𝑎2−𝑎𝑎32

   

𝜕𝜕𝑓𝑓3
𝜕𝜕𝜃𝜃4

= 𝜕𝜕𝑓𝑓1
𝜕𝜕𝜃𝜃2

= 1, 𝜕𝜕𝑓𝑓4
𝜕𝜕𝜏𝜏

= −𝑎𝑎2−𝑎𝑎3
𝑎𝑎1𝑎𝑎2−𝑎𝑎32

           

𝜕𝜕𝑓𝑓4
𝜕𝜕𝜃𝜃1

= 𝑎𝑎5𝑔𝑔(𝑎𝑎1+𝑎𝑎3)−𝑎𝑎4𝑔𝑔(𝑎𝑎2+𝑎𝑎3)
𝑎𝑎1𝑎𝑎2−𝑎𝑎32

, 𝜕𝜕𝑓𝑓2
𝜕𝜕𝜏𝜏

= 𝑎𝑎2
𝑎𝑎1𝑎𝑎2−𝑎𝑎32

  

The general law used for linearization is 

∆�̇�𝑥 = 𝐴𝐴 ∆𝑥𝑥+ 𝐵𝐵 ∆𝑢𝑢                                                                                                                    

The system become  

�̇�𝑥 = 𝐴𝐴 (𝑥𝑥− 𝑥𝑥𝑟𝑟) +𝐵𝐵 𝑢𝑢                                                                                     (4) 

where 𝑥𝑥𝑟𝑟 is the equilibrium point [𝑥𝑥𝑟𝑟 =(𝜋𝜋 2⁄ ,0,0,0)]. Substitute the numerical values from Table (A.1), the 

following state space can be found 

�̇�𝑥 = �
0

35.7868
0

−24.0845

   
1
0
0
0

   
0

−17.743
0

87.0211

   
0
0
1
0

�(𝑥𝑥 − 𝑥𝑥𝑟𝑟) + �
0

56.8923
0

−118.0847

� u            (5) 

3. Stabilization of swing up Using LQR Control 

The system is stabilized by Linear Quadratic Regulator (LQR) which is an optimal control design technique. 

The cost function is parameterized by two matrices, Q and R, that weight the state vector and the system input 

respectively.  

Consider the single-input, single-output (SISO) system described by the general state space form [11], 

ẋ = A x+ B u                                                                                                     (6) 

where 𝑢𝑢 is the control input 

𝑢𝑢 = −𝐾𝐾 𝑥𝑥 = −[𝐾𝐾1 𝐾𝐾2 . . . .𝐾𝐾𝑛𝑛] 𝑥𝑥                                                                    (7) 

The cost function of system (5) is 

𝐽𝐽 = � (𝑥𝑥𝑇𝑇 𝑄𝑄 𝑥𝑥 + 𝑅𝑅 𝑢𝑢2) 𝑑𝑑𝑑𝑑
∞

0
                                                                           (8) 

where 𝑅𝑅 is a scalar weighting factor. The above cost function is minimized when 
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𝐾𝐾 = 𝑅𝑅−1 𝐵𝐵𝑇𝑇 𝑃𝑃                                                                                                   (9) 

the P is 𝑛𝑛 𝑥𝑥 𝑛𝑛 matrix determined by the following equation 

𝐴𝐴𝑇𝑇 𝑃𝑃+ 𝑃𝑃 𝐴𝐴−𝑃𝑃 𝐵𝐵 𝑅𝑅−1 𝐵𝐵𝑇𝑇 𝑃𝑃+𝑄𝑄 = [0]                                               (10) 

such that it give P = P𝑇𝑇 > 0, 𝑄𝑄 and 𝑅𝑅 are selected such that P give a positive definite. 

It can be shown that the system is stabilized by with the following setting of weight matrix 𝑄𝑄 and 𝑅𝑅 chosen as 

follows. 

Q = �
30
0
0
0

  
0

40
0
0

  
0
0

60
0

  
0
0
0
0

� , R = [1]                           

Then, the elements of the gain matrix can be easily obtained become 

K = [−113.442 −23.934 −104.85 −14.714]          

so that the eigenvalues of closed system  |(λ I− B K)| at unstable equilibrium point become 

λ1 = −360, λ2 = −7.9134, λ3 = −6.5474 , λ4 = −1.4595     

4. Development and Design of Observers for pendubot 

   In what follows, the development of equations describing suggested observers is presented. Also, the observer 

design is set-up to place the poles of each observer at desired locations. The analysis is initiated by high gain 

observer (HGO) and then followed by the other three types of extended state observers. 

4.1 High gain observer 

Let 𝑥𝑥�1 represents the estimate of the first link angular position, and then the observer design for the first link of 

pendubot is based on the following equations  

𝑒𝑒1 = (𝑥𝑥1− 𝑥𝑥�1)                                                                

𝑥𝑥�̇1 = 𝑥𝑥�2 +
𝛼𝛼1
𝜀𝜀  𝑒𝑒1                                                                                                 (11) 

𝑥𝑥�̇2 = 𝛼𝛼2
𝜀𝜀2

 𝑒𝑒1                       

where 𝑒𝑒1 are the estimation error of the first link position. For the second link, the observer set of equations is  

𝑒𝑒2 = (𝑥𝑥3 − 𝑥𝑥�3)                                                                
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𝑥𝑥�̇3 = 𝑥𝑥�4 +
𝛼𝛼3
𝜀𝜀  𝑒𝑒2                                                                                                (12) 

𝑥𝑥�̇4 = 𝛼𝛼4
𝜀𝜀2

 𝑒𝑒1                       

where 𝑒𝑒2 are the estimation error of the second link position. The HGO gains are adjusted as [12]. 

ℎ1 = 𝛼𝛼1
𝜀𝜀

 ,ℎ2 = 𝛼𝛼2
𝜀𝜀2

                                                                                                      

ℎ3 = 𝛼𝛼3
𝜀𝜀

 ,ℎ4 = 𝛼𝛼4
𝜀𝜀2

                                                                                                      

where (𝛼𝛼𝑖𝑖  ;𝑖𝑖 = 1, . . ,4) are chosen so that (𝐴𝐴− 𝐿𝐿𝐿𝐿) is Hurwitz. They are chosen so that the observer poles 

would lie in (−𝜔𝜔0) at the half-plane  

𝜆𝜆(𝑠𝑠) = 𝑠𝑠2 + 𝛼𝛼1 𝑠𝑠+ 𝛼𝛼2 = (𝑠𝑠 +𝜔𝜔0)2                                                                     

𝜆𝜆(𝑠𝑠) = 𝑠𝑠2 + 𝛼𝛼3 𝑠𝑠+ 𝛼𝛼4 = (𝑠𝑠 +𝜔𝜔0)2                                                                     

by a simple calculation the poles can be obtained 

𝛼𝛼1 = 𝛼𝛼3 = 2 𝜔𝜔0 ,   𝛼𝛼2 = 𝛼𝛼4 =  𝜔𝜔0
2                           

where  0 < 𝜀𝜀 ≪ 1.  

4.2 Extended state observers 

    In this part, the equations relevant to the three observers (ESO, NESO and LESO) is established and the 

designs of suggested observers are setup to be next applied for observations of the pendubot system. 

4.2.1 Extended state observer 

Pendubot observer design for the first link: 

𝑒𝑒1 = 𝑥𝑥�1 − 𝑥𝑥1  

𝑥𝑥�̇1 = 𝑥𝑥�2 −
𝛼𝛼1
𝜀𝜀

 𝑒𝑒1  

𝑥𝑥�̇2 = −𝛼𝛼2
𝜀𝜀2

 𝑒𝑒1 + 𝑏𝑏0 𝑢𝑢+ 𝑥𝑥�5                        (13) 

𝑥𝑥�̇5 = −𝛼𝛼5
𝜀𝜀3

 𝑒𝑒1  

where 𝑒𝑒1 are the estimation error of the first link position. On the other hand, the observer structure for the 

second link: 
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𝑒𝑒2 = 𝑥𝑥�3 − 𝑥𝑥3  

𝑥𝑥�̇3 = 𝑥𝑥�4 −
𝛼𝛼3
𝜀𝜀

 𝑒𝑒2  

𝑥𝑥�̇4 = −𝛼𝛼4
𝜀𝜀2

 𝑒𝑒2 + 𝑏𝑏0 𝑢𝑢+ 𝑥𝑥�6                  (14) 

𝑥𝑥�̇6 = −𝛼𝛼6
𝜀𝜀3

 𝑒𝑒2  

where 𝑒𝑒2 is the position estimation error of the second link, 𝑏𝑏0 is the normal value of 𝑏𝑏, (𝛼𝛼𝑖𝑖 ; 𝑖𝑖 = 1, . . ,6) are 

chosen so that (𝐴𝐴− 𝐿𝐿𝐿𝐿) is Hurwitz. They are chosen so that the observer poles would lie in (−𝜔𝜔0) at the half-

plane [12].  

𝜆𝜆(𝑠𝑠) = 𝑠𝑠3 + 𝛼𝛼1 𝑠𝑠2 + 𝛼𝛼2 𝑠𝑠+ 𝛼𝛼5 = (𝑠𝑠 +𝜔𝜔0)3  

𝜆𝜆(𝑠𝑠) = 𝑠𝑠3 + 𝛼𝛼3 𝑠𝑠2 + 𝛼𝛼4 𝑠𝑠+ 𝛼𝛼6 = (𝑠𝑠 +𝜔𝜔0)3  

then, it is easy to calculate 𝛼𝛼𝑖𝑖 in terms of frequency 𝜔𝜔0 

𝛼𝛼1 = 𝛼𝛼3 = 3 𝜔𝜔0 , 𝛼𝛼2 = 𝛼𝛼4 = 3 𝜔𝜔0
2, 𝛼𝛼5 = 𝛼𝛼6 = 𝜔𝜔0

3 

    To eliminate peaking phenomenon, the parameter (𝜀𝜀) is made to be varying with time such that  𝜀𝜀 = 1 𝑅𝑅(𝑑𝑑)⁄  

and the function 𝑅𝑅(𝑑𝑑) given by [13]  

𝑅𝑅 = � 100 𝑑𝑑3                         0 ≤ 𝑑𝑑 ≤ 1
  100                                      𝑑𝑑> 1 

                                                        (15) 

if noise or disturbance act on the practical measurement signal very small (𝜀𝜀) will cause big observer error. To 
eliminate the effect of noise or disturbance, a switched gain can be used at the observer in the case of observers 

used in control design of the system. 

4.2.1 Nonlinear Extended State Observer (NESO): 

The observer design for pendubot are represented below. The observer equations of the first link is given by  

𝑒𝑒1 = 𝑥𝑥�1 − 𝑥𝑥1  

𝑥𝑥�̇1 = 𝑥𝑥�2 − 𝛽𝛽1 fal (𝑒𝑒2 ,𝛼𝛼1 ,𝜎𝜎)  

𝑥𝑥�̇2 = 𝑥𝑥�5 − 𝛽𝛽2 fal (𝑒𝑒2 ,𝛼𝛼2 ,𝜎𝜎) + 𝑏𝑏0 𝑢𝑢                          (16) 

𝑥𝑥�̇5 = −𝛽𝛽5 fal (𝑒𝑒2,𝛼𝛼5 ,𝜎𝜎)  

where 𝑒𝑒1 is the position estimation error of the first link. For the second link, the observer structure is as 
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follows: 

𝑒𝑒2 = 𝑥𝑥�3 − 𝑥𝑥3  

𝑥𝑥�̇3 = 𝑥𝑥�4 − 𝛽𝛽3 fal (𝑒𝑒2 ,𝛼𝛼3 ,𝜎𝜎)   

𝑥𝑥�̇4 = 𝑥𝑥�6 − 𝛽𝛽4 fal (𝑒𝑒2,𝛼𝛼4 ,𝜎𝜎) + 𝑏𝑏0 𝑢𝑢               (17) 

𝑥𝑥�̇6 = −𝛽𝛽6 fal (𝑒𝑒2,𝛼𝛼6 ,𝜎𝜎)  

where 𝑒𝑒2 is the position estimation error of the second link, 𝑏𝑏0 is the normal value of b, (𝐴𝐴− 𝐿𝐿𝐿𝐿) must be 

Hurwitz, 𝛽𝛽 is adjastibule gain, 𝑏𝑏0 is the normal value of B, and fal (.) is defined as [12]: 

fal(𝑒𝑒, 𝛼𝛼,𝜎𝜎) = � 
|𝑒𝑒|𝛼𝛼  𝑠𝑠𝑖𝑖𝑔𝑔𝑛𝑛(𝑒𝑒), |𝑒𝑒| > 𝜎𝜎
𝑒𝑒

𝜎𝜎1−𝛼𝛼,         |𝑒𝑒| ≤ 𝜎𝜎                                                                (18) 

where 𝜎𝜎 > 0. The nonlinear function is used to make the observer more efficient, was selected heuristically 

based on experimental results. The fal function are represented in  Figure (2). 

 

Figure 2: Linear and nonlinear function. 

The observer gains designated by elements of matrix 𝐿𝐿 = [𝛽𝛽1 ,𝛽𝛽2 ,𝛽𝛽3 ,𝛽𝛽4 ,𝛽𝛽5 ,𝛽𝛽6] are chosen so that the observer 

poles would lie in −𝜔𝜔0 at the half-plane [12].  

𝜆𝜆(𝑠𝑠) = 𝑠𝑠3 + 𝛽𝛽1 𝑠𝑠2 + 𝛽𝛽2 𝑠𝑠+ 𝛽𝛽5 = (𝑠𝑠 +𝜔𝜔0)3   

𝜆𝜆(𝑠𝑠) = 𝑠𝑠3 + 𝛽𝛽3 𝑠𝑠2 + 𝛽𝛽4 𝑠𝑠 + 𝛽𝛽6 = (𝑠𝑠 +𝜔𝜔0)3  Then  

𝛽𝛽1 = 𝛽𝛽3 = 3 𝜔𝜔0 ,𝛽𝛽2 = 𝛽𝛽4 = 3 𝜔𝜔0
2,𝛽𝛽5 = 𝛽𝛽6 = 𝜔𝜔0

3   

where 𝜔𝜔0 are chosen so that it could be a trade-off between how fast the observer tracks the states and how 

sensitive it is to the sensor noises. 
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4.2.3 Linear Extended Observer (LESO) 

The main difference between NESO and LESO is that LESO works in the linear part of 𝑓𝑓𝑓𝑓𝑓𝑓 function and no 
nonlinearity is included within its descriptive equations. For Pendubot, the observer equations of the first link is 

given by  

𝑒𝑒1 = 𝑥𝑥�1 − 𝑥𝑥1                                                                                                               

𝑥𝑥�̇1 = 𝑥𝑥�2 − 𝛽𝛽1 𝑒𝑒1                                                                                                          

𝑥𝑥�̇2 = 𝑥𝑥�5 − 𝛽𝛽2 𝑒𝑒1 + 𝑏𝑏0 𝑢𝑢                                                                                   (19) 

𝑥𝑥�̇5 = −𝛽𝛽5 𝑒𝑒1  

where 𝑒𝑒1 are the estimation error of the first link position. On the other hand, the observer equations for the 

second link is given by   

𝑒𝑒2 = 𝑥𝑥�3 − 𝑥𝑥3  

𝑥𝑥�̇3 = 𝑥𝑥�4 − 𝛽𝛽3 𝑒𝑒2  

𝑥𝑥�̇4 = 𝑥𝑥�6 − 𝛽𝛽4 𝑒𝑒2 + 𝑏𝑏0 𝑢𝑢                    (20) 

𝑥𝑥�̇6 = −𝛽𝛽6 𝑒𝑒2   

where (𝐴𝐴− 𝐿𝐿𝐿𝐿) must be Hurwitz. Observer gains 𝐿𝐿 = [𝛽𝛽1 ,𝛽𝛽2 ,𝛽𝛽3 ,𝛽𝛽4 , 𝛽𝛽5 ,𝛽𝛽6]  are chosen so that the observer 

poles would lie in −𝜔𝜔0 at the half-plane [12].  

𝜆𝜆(𝑠𝑠) = 𝑠𝑠3 + 𝛽𝛽1 𝑠𝑠2 + 𝛽𝛽2 𝑠𝑠+ 𝛽𝛽5 = (𝑠𝑠 +𝜔𝜔0)3  

𝜆𝜆(𝑠𝑠) = 𝑠𝑠3 + 𝛽𝛽3 𝑠𝑠2 + 𝛽𝛽4 𝑠𝑠 + 𝛽𝛽6 = (𝑠𝑠 +𝜔𝜔0)3  

then,  

𝛽𝛽1 = 𝛽𝛽3 = 3 𝜔𝜔0 , 𝛽𝛽2 = 𝛽𝛽4 = 3 𝜔𝜔0
2 , 𝛽𝛽5 = 𝛽𝛽6 = 𝜔𝜔0

3  

where 𝜔𝜔0 are chosen so that it could be a trade-off between how fast the observer tracks the states and how 

sensitive it is to the sensor noises. 

5. Simulated Results 

The designed parameter of HGO, LESO, NESO and ESO, respectively are listed in Tables (A.2), (A.3), (A.4) 

and (A.5). 
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The performance comparison of observers is assessed in terms of the speed of tracking and variance of 

estimation error. The simulation of the pendubot with four cases (nominal, disturbance, noise and uncertainty) 

are shown below.  

5.1 Nominal System 

Figure (3) below shows the actual behavior of system states and the estimate states of the observers for the first 

link of the pendubot. Figure shows the actual state of angular position (𝑥𝑥1) and the estimate state of angular 

position (𝑥𝑥�1). Also, the figure depicts the actual state of velocity angular position (𝑥𝑥2) and the estimate state of 

velocity angular position (𝑥𝑥�2) resulting from all observers. The error for angular position and its estimate (𝑒𝑒1) 

and angular velocity and its estimate (𝑒𝑒2) are also indicated in the figure. It is shown in the figure that NESO has 

the fastest transient response among the other observers but with variance of  𝑒𝑒1 =0.0011 and 𝑒𝑒2 = 1.028 while 

HGO has the lowest variance of  𝑒𝑒1 = 5.5288e ∗10−4 and 𝑒𝑒2 = 0.3664  

 

(a) 

 

(b) 

 

(c) 

Figure 3: Actual and estimate states for first link of pendubot system (Nominal Case) 
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Figure (4) gives the actual and estimate responses of the angular position (𝑥𝑥3, 𝑥𝑥�3) and velocity angular position 

(𝑥𝑥4, 𝑥𝑥�4) for the second link. Also, The error for angular position and its estimate (𝑒𝑒1) and angular velocity and 

its estimate (𝑒𝑒2) are also shown in the figure. It is clear from the figure that HGO has the fastest and the lowest 

estimation error with estimation error variance of 𝑒𝑒3 = 3.8341 ∗ 10−10 and 𝑒𝑒4 = 0.0286. NESO and LESO also 

give a good performance with variance of (𝑒𝑒3 = 2.1071 ∗ 10−4 and  𝑒𝑒4 = 4.3021) for NESO and (𝑒𝑒3 =

2.7728 ∗ 10−4 and  𝑒𝑒4 = 5.2348) for LESO. 

 

(a) 

 

(b) 

 

(c) 

Figure 4: Actual and estimate states for Pendulum of pendubot system (Nominal Case) 

Figures (3,4) (a, b and c) clarify the actual response of the Pendubot position with the state estimated by 

observers and the estimation error of angular position. 
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5.2 pendubot system under disturbance 

In this section, the same set of behaviors shown in previous scenarios are repeated with the system is subjected 

to disturbance and the performance of observers will be assessed accordingly. The applied disturbance is a pulse 

of height 0.1, which is exerted at time interval 4-5 seconds during the simulation time.  

The same states and estimation errors as before are shown in Figure (5) for the first link part of the system. It 

has seen that that HGO has the best performance with variance of 𝑒𝑒1 = 0.0020and  𝑒𝑒2 = 0.4333 . Also NESO 

shows a good performance with variance of 𝑒𝑒1 = 0.0025 and  𝑒𝑒2 =1.2661.  

 

(a) 

 

(b) 

 

(c) 

Figure 5: Actual and estimate states for the first link of pendubot system (Under Disturbance) 
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For the second link part, the simulations illustrated in Figure (6). It is clear that HGO has a fast transient 

response with variance of 𝑒𝑒3 =0.0015 and 𝑒𝑒4 =7.4083. NESO has a slow transient but it has the lowest variance 

of its estimation error of 𝑒𝑒3 =0.0017 and  𝑒𝑒4 =4.5411. 

 

(a) 

 

(b) 

 

(c) 

Figure 6: Actual and estimate states for arm of second link system (Under Disturbance) 

Figures (5, 6) (a, b and c) clarify the actual response of the Pendubot with the state estimated by observers and 

the estimation error of angular position when an input disturbance is applied to the system. 
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links. A white noise power of 6 and 20 are imposed to first and second link, respectively. 

Figure (7) illustrate the actual response of the first link, the responses of estimated states and estimation errors 

for position and velocity for all observers. The figure shows that NESO has the best performance for the first 

link it has a fast transient response and low variance of 𝑒𝑒1 = 0.0011 and 𝑒𝑒2 = 1.1604. Also HGO shows a good 

performance and its variance is 𝑒𝑒1 = 5.4996 ∗ 10−4 and 𝑒𝑒2 = 2.0963 . 

 

(a) 

 

(b) 

 

(c) 

Figure 7: Actual and estimate states for first link of pendubot system (with noise injection) 
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estimation error variance of  𝑒𝑒3 = 2.5021 ∗ 10−4 and  𝑒𝑒4 = 5.0226. 

 

(a) 

 

(b) 

 

(c) 

Figure 8: Actual and estimate states for second link of pendubot system (with noise injection) 

Figures (7, 8) (a, b and c) clarify the actual response of the Pendubot with the state estimated by observers and 

the estimation error of angular position when an input disturbance is applied to the system. 
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has the lowest estimation error variance of 𝑒𝑒1 = 5.4999 ∗ 10−4 and  𝑒𝑒2 = 1.6434 and its transient response is 

good but the fastest one is NESO with variance of 𝑒𝑒1 =0.0012 and 𝑒𝑒2 = 3.0165 . ESO also has a fast response 

than HGO but its variance is largest one 𝑒𝑒1 = 0.0272 and  𝑒𝑒2 = 10.9321.  

 

(a) 

 

(b) 

 

(c) 

Figure 9: Actual and estimate states for first link of pendubot system (with uncertainty) 
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(a) 

 

(b) 

 

(c) 

Figure 10: Actual and estimate states for second link of pendubot system (with uncertainty) 

6. Conclusion 

The simulation shows that there is no unique observer could cope with all systems uncertainties, noises and 

disturbances for both links of pendubot.  

This is due to the structure characterized each observer. As it has been reported using simulation, for every case 
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dynamic performance. However, on the average, the NESO showed good dynamic characteristics with low 

variances.  
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HGO shows a good transient response. ESO shows a peaking phenomenon under disturbance. LESO and NESO 

perform approximately the same for the nominal system and the system under disturbance. 
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Appendix  

Table (A.1) lists the parameter values of pendubot [14]. Table (A.2-A.5) gives the design parameters obtained 

for each observer. 

Table (A.1): The numeric values of pendubot parameters 

Parameter Symbol Value Unit 

The total moment of  inertia link(1) 𝐽𝐽1  8.03 ∗ 10−3 𝐾𝐾𝑔𝑔.𝑚𝑚2 
Total length of the link (1) 𝑓𝑓1  0.21 𝑚𝑚 

Distance from the axis of rotation of link (1) to the center of 

gravity 
𝑟𝑟1  0.116 𝑚𝑚 

Total weight of the link (1) 𝑚𝑚1  0.4825 𝐾𝐾𝑔𝑔 

The total moment of inertia link(2) 𝐽𝐽2  1.812 ∗ 10−3 𝐾𝐾𝑔𝑔.𝑚𝑚2 
Total length of the link (2) 𝑓𝑓2  0.233 𝑚𝑚 

Distance from the axis of rotation of link (2) to the center of 

gravity 
𝑟𝑟2   0.134 𝑚𝑚 

Total weight of the link (2) 𝑚𝑚2  0.2208 𝐾𝐾𝑔𝑔 
Gravitational constant ց 9.81 𝑚𝑚/𝑠𝑠2 

 

Table (A.2): HGO parameter    

 

Table (A.4): NESO parameter. 

Parameter Value 

𝝎𝝎𝟎𝟎𝟎𝟎 = 𝝎𝝎𝟎𝟎𝟎𝟎 40 

𝜷𝜷𝟎𝟎 = 𝜷𝜷𝟑𝟑 120 

𝜷𝜷𝟎𝟎 = 𝜷𝜷𝟒𝟒 4800 

𝜷𝜷𝟓𝟓 = 𝜷𝜷𝟔𝟔 64000 
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𝜶𝜶𝟎𝟎 = 𝜶𝜶𝟎𝟎 1 

𝜶𝜶𝟑𝟑 = 𝜶𝜶𝟒𝟒 0.75 

𝜶𝜶𝟓𝟓 = 𝜶𝜶𝟔𝟔 0.5 

 

Table (A.3): LESO parameter. 

Parameter Value 

𝝎𝝎𝟎𝟎𝟎𝟎 = 𝝎𝝎𝟎𝟎𝟎𝟎 300 

𝜶𝜶𝟎𝟎 = 𝜶𝜶𝟑𝟑 900 

𝜶𝜶𝟎𝟎 = 𝜶𝜶𝟒𝟒 27 ∗ 104 

𝜶𝜶𝟓𝟓 = 𝜶𝜶𝟔𝟔 27∗106  

𝜺𝜺 0.01 

 

Table (A.5): ESO parameter. 

Parameter Value 

𝝎𝝎𝟎𝟎𝟎𝟎 = 𝝎𝝎𝟎𝟎𝟎𝟎 40 

𝜷𝜷𝟎𝟎 = 𝜷𝜷𝟑𝟑 120 

𝜷𝜷𝟎𝟎 = 𝜷𝜷𝟒𝟒 4800 

𝜷𝜷𝟓𝟓 = 𝜷𝜷𝟔𝟔 64000 

 


