
 

 

 

 

308 
 

 American Scientific Research Journal for Engineering, Technology,  and Sciences  (ASRJETS) 
ISSN (Print) 2313-4410, ISSN (Online) 2313-4402 

© Global Society of Scientific Research and Researchers  
http://asrjetsjournal.org/  

 

Determination of Reactive Properties of a Series of Mono-

Functionalized Bis-tetrathiafulvalene Employing DFT 

Calculations 

Amel Bendjeddoua*, Tahar Abbazb, Abdelkrim Gouasmiac, Didier Villemind 

a,bLaboratory of Aquatic and Terrestrial Ecosystems, Org. and Bioorg. Chem. Group, University of Mohamed-

Cherif Messaadia, Souk Ahras, 41000, Algeria 
cLaboratory of Organic Materials and Heterochemistry, University of Larbi Tebessi, Tebessa, 12000, Algeria 
dLaboratory of Molecular and Thio-Organic Chemistry, UMR CNRS 6507, INC3M, FR 3038, Labex EMC3, 

ensicaen & University of Caen, Caen 14050, France 
a,bEmail: amel.bendjeddou@univ-soukahras.dz; tahar.abbaz@univ-soukahras.dz 

cEmail: akgouasmia@hotmail.com 
dEmail: didier.villemin@ensicaen.fr 

 

 

 

Abstract  

Density functional Theory (DFT) calculations at the B3LYP/6-31G (d,p) level of theory are carried out to 

investigate the equilibrium geometry of the novel compounds 3(a-e). Moreover, The Molecular electrostatic 

Potential (MEP) analysis reveals the sites for electrophilic attack and nucleophilic reactions within the 

molecules. Additionally, the reactivity and reactive site within the mono-functionalized bis-tetrathiafulvalenes, 

dipole moment, theoretical study of the electronic structure, nonlinear optical properties (NLO), and natural 

bonding orbital (NBO) analysis are performed and discussed. 

Keywords: Tetrathiafulvalenes; density functional theory; computational chemistry; electronic structure; 

quantum chemical calculations. 
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1. Introduction  

Tetrathiafulvalene (TTF) chemistry has a long history since the first discovery of its conductivity within the 

Nineteen Seventies [1,2].  Interests within the related molecules have spread into varied fields concerned with 

electroactive materials due to their potential for the electronic devices like field effect transistors (FETs) [3,4], 

and photovoltaic cells [5,6]. Carrier generation is the primary concern in order to obtain electroactive organic 

materials. The carriers in molecular conductors [7,8] are usually generated based on a charge-transfer 

mechanism between the electron donor and acceptor molecules, a mechanism that was proposed by Mulliken 

within the Fifties [9]. This mechanism is the underlying conception for carrier generation within the current 

molecular conductors, and thereafter has been extensively adopted for single-component molecular conductors 

[10]. Intensive search for interesting and promising organic materials to indicate highly conducting or even 

superconducting properties, unique magnetic ordering or interesting optical characteristics has resulted within 

the synthesis of new electron donor and acceptor molecules. An enormous majority of organic metal-like 

materials is derived of tetrathiafulvalene (TTF) including its symmetrical and unsymmetrical derivatives. By 

means of increasing development of computational chemistry within the past decade, the research of theoretical 

modeling of drug design, functional material design, etc., has become much more mature than ever. Several 

important physico-chemical properties of biological and chemical systems can be predicted from the first 

principles by varied computational techniques [11]. In recent years, density functional theory (DFT) has been a 

shooting star in theoretical modeling. the development of higher and better exchange-correlation functionals 

made it possible to calculate several molecular properties with comparable accuracies to traditional correlated ab 

initio ways, with a lot of favorable computational costs [12]. Literature survey disclosed that the DFT has a 

great accuracy in reproducing the experimental values of in geometry, dipole moment, vibrational frequency, 

etc. [13,14]. In recent years organic nonlinear optical (NLO) materials have attracted attention, due to their 

second or third order hyper-polarizabilities compared to those of inorganic NLO materials [15]. Several studies 

are being carried out to synthesize new organic materials with large second-order optical nonlinear property in 

order to satisfy present and future technological needs [16]. They find innumerable applications within the 

various fields like telecommunications, optical computing, and optical data storage. In the present work the 

geometrical parameters, Natural Bond Orbital (NBO) analysis and electrostatic potential were calculated using 

B3LYP method with 6-31G (d,p) as basis set. The electronic dipole moment (µ) and first order 

hyperpolarizability (β) value of the molecules are computed to study the Non-Linear Optical (NLO) property. 

NBO analyses were performed to provide valuable information regarding various intermolecular interactions. 

The calculated Highest Occupied Molecular Orbital (HOMO) and Lowest Unoccupied Molecular Orbital 

(LUMO) energies show that charge transfer occurs within the molecules. Finally electronegativity (ϰ), hardness 

(η), softness (Ѕ) and Molecular electrostatic Potential maps (MEP) properties were calculated. 

2. Materials and methods 

All the quantum chemical calculations have been carried out with Gaussian 09 program package to predict the 

molecular structure, NBO, NLO and energy of the optimized structures using B3LYP functional and 6-31G 

(d,p) basis set, which invokes Becke’s three parameter hybrid exchange functional (B3), with Lee-Yang-Parr 

correlational functional (LYP). The basis set 6-31G (d,p) with ‘d’ polarization functions on heavy atoms and ‘p’ 
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polarization functions on hydrogen atoms are used for better description of polar bonds of molecule.  

3. Results and discussion 

3.1. Chemistry 

 In a precedent work [17], we have explained the synthesis of bis-tetrathiafulvalenes indicated in Figure 4. The 

synthetic route used to lead to the target functional linker between TTF units, is based on the reaction between 

two different functions respectively attached to a specific TTF ring. To incorporate an ester function in a link 

between TTF units, a reaction involving an acid chloride function of a TTF and one hydroxyl group of another 

TTF ring was used. As shown in Figure 4, the use of monohydroxyTTF 2 [18-20] with 1.5 equiv. of acid 

chloride TTF 1 [21-23] led to a series of mono-functionalized bisTTF 3(a-e). 
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Figure 4: Synthetic route for the preparation of mono-functionalized bisTTF 3(a-e) 

3.2. Molecular geometry 

 The optimized DFT geometries by B3LYP/6-31G (d,p) of the bis-TTF with atom numbering are shown in 

Figure 1. The internal coordinates describe the position of the atoms in terms of distances, angles and dihedral 

angles with respect to an origin atom.  

The symmetry coordinates are constructed using the set of internal coordinates. In this study, the standard 

internal coordinates for compounds 3(a-e) are presented in Tables 1-5. By allowing the relaxation of all 

parameters, the calculations converge to optimized geometries, which correspond to true energy minima, as 

revealed by the lack of imaginary frequencies in the vibrational mode calculation. 
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Figure 1: Optimized molecular structure of mono-functionalized bisTTF 3(a-e) 

 

Table 1: Optimized geometric parameters of compound 3a 

Bond Length(Å) Bond Angles (°) Dihedral Angles (°) 

R(1,2) 1.350 A(2,1,7) 123.507 D(7,1,2,6) 178.288 

R(1,7) 1.783 A(2,1,8) 123.849 D(2,1,7,24) 156.897 

R(1,8) 1.781 A(7,1,8) 112.629 D(1,2,6,3) 169.553 

R(2,5) 1.787 A(1,2,5) 123.142 D(6,3,4,22) 176.171 

R(2,6) 1.782 A(1,2,6) 123.289 D(4,3,9,20) 102.355 

R(3,4) 1.341 A(5,2,6) 113.563 D(6,3,9,10) 164.044 

R(3,6) 1.779 A(13,12,20) 112.058 D(22,4,5,2) 176.572 

R(3,9) 1.499 A(13,12,21) 123.526 D(1,8,23,29) 173.077 

R(9,20) 1.452 A(20,12,21) 124.415 D(11,9,20,12) 153.158 

R(12,13) 1.473 A(24,23,29) 123.841 D(20,12,13,14) 178.571 

R(12,20) 1.356 A(7,24,30) 115.375 D(21,12,13,25) 175.893 

R(12,21) 1.216 A(23,29,34) 96.395 D(13,12,20,9) 177.213 

R(30,31) 1.862 A(24,30,31) 103.831 D(14,13,25,26) 177.544 

R(31,32) 1.095 A(29,34,31) 113.017 D(13,14,16,17) 169.103 

R(31,33) 1.092 A(37,42,44) 105.867 D(14,16,17,18) 178.211 
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Table 2: Optimized geometric parameters of compound 3b 

Bond Length(Å) Bond Angles (°) Dihedral Angles (°) 

R(1,2) 1.350 A(2,1,7) 123.526 D(7,1,2,5) 178.206 

R(1,7) 1.783 A(2,1,8) 123.825 D(8,1,2,6) 156.955 

R(1,8) 1.781 A(7,1,8) 112.633 D(6,2,5,4) 169.559 

R(2,5) 1.787 A(1,2,5) 123.145 D(6,3,4,5) 176.224 

R(2,6) 1.782 A(1,2,6) 123.293 D(4,3,9,11) 102.788 

R(3,4) 1.341 A(5,2,6) 113.557 D(4,3,9,20) 164.498 

R(3,6) 1.779 A(4,3,6) 116.574 D(3,4,5,2) 176.518 

R(3,9) 1.499 A(4,3,9) 124.739 D(1,8,23,24) 172.973 

R(9,10) 1.091 A(2,5,4) 94.687 D(10,9,20,12) 152.630 

R(12,13) 1.472 A(2,6,3) 94.966 D(11,9,20,12) 177.370 

R(12,20) 1.356 A(1,7,24) 93.592 D(21,12,13,25) 177.806 

R(12,21) 1.216 A(1,8,23) 93.508 D(21,12,20,9) 175.362 

R(13,25) 1.347 A(20,12,21) 124.397 D(25,13,14,16) 177.882 

R(38,43) 1.837 A(28,37,39) 101.790 D(25,15,16,14) 169.738 

R(39,40) 1.091 A(27,38,43) 101.648 D(15,16,17,18) 179.590 

 

Table 3: Optimized geometric parameters of compound 3c 

Bond Length(Å) Bond Angles (°) Dihedral Angles (°) 

R(1,2) 1.350 A(2,1,7) 123.474 D(7,1,2,6) 179.255 

R(1,7) 1.777 A(2,1,8) 123.451 D(2,1,7,10) 168.988 

R(1,8) 1.777 A(7,1,8) 113.066 D(1,2,6,3) 160.155 

R(2,5) 1.782 A(1,2,5) 123.839 D(6,3,4,46) 175.432 

R(2,6) 1.784 A(1,2,6) 123.881 D(46,4,5,2) 171.541 

R(3,4) 1.355 A(5,2,6) 112.274 D(3,4,46,42) 114.963 

R(3,6) 1.781 A(12,11,13) 110.436 D(1,8,9,47) 173.541 

R(3,17) 1.773 A(3,17,11) 101.290 D(47,9,10,7) 178.861 

R(9,10) 1.345 A(18,19,20) 112.210 D(8,9,47,49) 174.507 

R(18,19) 1.354 A(27,28,30) 94.526 D(10,9,47,50) 116.193 

R(19,21) 1.215 A(27,29,31) 94.517 D(9,10,51,53) 124.011 

R(23,26) 1.083 A(31,30,32) 125.697 D(13,11,12,15) 177.096 

R(27,28) 1.779 A(30,32,34) 101.727 D(14,11,12,16) 177.404 

R(27,29) 1.779 A(31,33,35) 101.807 D(17,11,12,18) 177.534 

R(30,32) 1.766 A(32,34,37) 110.713 D(12,11,17,3) 165.179 
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Table 4: Optimized geometric parameters of compound 3d 

Bond Length(Å) Bond Angles (°) Dihedral Angles (°) 

R(1,2) 1.350 A(2,1,7) 123.430 D(7,1,2,6) 178.119 

R(1,7) 1.783 A(2,1,8) 123.764 D(2,1,7,10) 158.535 

R(1,8) 1.781 A(7,1,8) 112.773 D(1,2,6,3) 162.733 

R(2,5) 1.781 A(1,2,5) 123.745 D(6,3,4,54) 175.459 

R(2,6) 1.782 A(1,2,6) 123.723 D(54,4,5,2) 172.543 

R(3,4) 1.355 A(5,2,6) 112.507 D(3,4,54,50) 115.052 

R(3,6) 1.781 A(4,3,6) 117.056 D(1,8,9,11) 173.449 

R(3,25) 1.773 A(1,8,9) 93.615 D(11,9,10,7) 171.756 

R(9,10) 1.350 A(9,11,16) 96.355 D(7,10,12,13) 150.808 

R(9,11) 1.763 A(10,12,13) 103.807 D(10,12,13,14) 127.959 

R(10,12) 1.764 A(11,16,18) 107.939 D(21,19,20,23) 176.699 

R(16,17) 1.094 A(17,16,18) 108.596 D(22,19,20,24) 177.055 

R(26,27) 1.354 A(26,27,29) 124.093 D(25,19,20,26) 177.093 

R(27,28) 1.474 A(38,40,42) 101.699 D(20,19,25,3) 163.877 

R(27,29) 1.215 A(39,41,43) 101.844 D(19,20,26,27) 179.965 

 

Table 5: Optimized geometric parameters of compound 3e 

Bond Length(Å) Bond Angles (°) Dihedral Angles (°) 

R(1,2) 1.368 A(2,1,25) 121.362 D(2,1,25,26) 141.099 

R(1,25) 1.395 A(1,2,3) 110.943 D(1,2,3,5) 179.069 

R(2,3) 1.472 A(1,2,4) 125.252 D(2,3,5,7) 175.122 

R(2,4) 1.211 A(3,2,4) 123.805 D(2,3,6,8) 177.935 

R(3,5) 1.776 A(2,3,5) 116.115 D(10,7,8,6) 169.580 

R(3,6) 1.348 A(2,3,6) 126.269 D(8,7,10,12) 179.438 

R(5,7) 1.785 A(10,11,13) 94.596 D(7,10,12,14) 158.762 

R(6,8) 1.741 A(10,12,14) 94.604 D(10,11,13,15) 172.487 

R(6,9) 1.083 A(13,15,17) 101.738 D(15,13,14,12) 172.903 

R(7,10) 1.349 A(14,16,18) 101.877 D(14,13,15,17) 123.319 

R(18,22) 1.091 A(1,25,27) 123.281 D(13,15,17,19) 177.341 

R(42,43) 1.404 A(26,25,27) 120.991 D(1,25,26,28) 176.411 

R(44,45) 1.086 A(28,26,29) 121.114 D(26,25,27,31) 179.216 

R(46,48) 1.396 A(42,44,46) 119.408 D(25,26,28,33) 179.446 

R(48,49) 1.085 A(54,53,56) 107.304 D(25,27,30,34) 178.127 
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3.3. Molecular electrostatic potential 

 The molecular electrostatic potential V(r) that is created in the space around a molecule by its nuclei and 

electrons is well established as a guide to molecular reactive behavior. It is defined by: 

''/)'(/)( rdrrrρrRZrV AA
3∫ −−−∑=  

In which ZA is the charge of nucleus A, located at RA, ρ(r') is the electronic density function for the molecule 

and r' is the dummy integration variable [24,25]. MEP is related to the electronic density and is a very useful 

descriptor in determining sites for electrophilic and nucleophilic reactions as well as hydrogen bonding 

interactions [26,27]. Being a real physical property, V(r) can be determined experimentally by diffraction or by 

computational methods [28]. However, identification of reactivity patterns based on the MEP exhibits intrinsic 

drawbacks, since the MEP is obtained through the classical electrostatic potential [29]. Then it is not possible to 

determine sites for nucleophilic attack because the zones of positive potential are not necessarily expressing 

affinity for nucleophiles but the concentrated nature of the nuclear charges. Molecular electrostatic potential 

mapping is very useful in the investigation of the molecular structure with its physiochemical property 

relationships [30-32]. The MEP map of bis-TTF 3(a-e) visibly suggests that the region around carbon atoms 

linked through double bond with oxygen atom represents the most negative potential region (red). The hydrogen 

atoms attached to the ends of the molecular chain beat the maximum bang of positive charge (blue). The color 

scheme for MEP surface is red, electron rich, partially negative charge; blue, electron deficient, partially 

positive charge; light blue, slightly electron deficient region; yellow, slightly electron rich region, respectively. 

The negative (red) region of MEP was related to electrophilic reactivity and the positive (blue) region to 

nucleophilic reactivity (Figure 2). 
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Figure 2:  Molecular electrostatic potential surface of mono-functionalized bisTTF 3(a-e) 

3.4. Frontier molecular orbitals (FMOs) 

 The frontier molecular orbitals can offer a reasonable qualitative prediction of the excitation properties and the 

ability of electron transport [33,34]. The electronic absorption basically means the transition from the ground to 

the first excited state and is mainly described by one electron transition from the highest occupied molecular 

orbital (HOMO) to the lowest unoccupied molecular orbital (LUMO). In other words, HOMO is the orbital that 

acts as an electron donor whereas LUMO is an orbital that acts as electron acceptor. The energy values of 

HOMO and LUMO and their energy gap reflect the chemical activity of the molecules. Figure 3 show the 

distributions and energy levels of the HOMO-1, HOMO, LUMO and LUMO+1 orbitals computed at the 

B3LYP/6-31G (d,p) level for compound 3c. 

 

Figure 3: HOMO-LUMO Structure with the energy level diagram of compound 3c 

3.5. Global reactivity descriptors 

 Global chemical reactivity descriptors of compounds such as hardness, chemical potential, softness, 

electronegativity and electrophilicity index as well as local reactivity has been defined [35-37]. Pauling 

introduced the concept of electronegativity as the power of an atom in a compound to attract electrons. Hardness 
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(η), chemical potential (µ) electronegativity (χ) and softness are defined follows: 

( ) ( ) ( ) ( )rvrv NENμη 22
2
1

2
1 ∂∂=∂∂= //  

( ) ( ) χNEμ rv −=∂∂= /  

where E and ν(r) are the electronic energy and external potential of an N-electron system respectively. Softness 

is a property of compound that measures the extent of chemical reactivity. It is the reciprocal of hardness 

ηS 21 /=  

Using Koopman’s theorem for closed-shell compounds η, µ and χ can be defined as, 

( ) ( ) χEEEAIEμ NN −=−=+−= −+ 22 11 //  

where A and I are the ionization potential and electron affinity of the compounds respectively. Electron affinity 

refers to the capability of legend to accept precisely one electron from a donor. However, in many kinds of 

bonding viz. covalent hydrogen bonding, partial charge transfer takes places. Recently Parr and his colleagues 

have defined a new descriptor to quantity the global electrophilic power of the compound as electrophilicity 

index (ω), which defines a quantitative classification of global electrophilic nature of a compound. Parr and his 

colleagues have proposed electrophilicity index (ω) as a measure of energy lowering due to maximal electron 

flow between donor and acceptor. They defined electrophilicity index (ω) as follows: 

ημω 22 /=  

Electrophilicity index is one of the important quantum chemical descriptors in describing toxicity or biological 

activities of the molecules in the context of development of Quantitative Structure-Activity Relationship 

(QSAR) parlance. Quantitative Structure-Activity Relationship (QSAR) methodology is one of the most 

powerful tools for describing the relationships between biological activity and the physicochemical 

characteristics of molecules. The molecular descriptor is the final result of a logic and mathematical procedure 

which transforms chemical information encoded within a symbolic representation of a molecule into a useful 

number or the result of some standardized experiment. Many of the descriptors are based directly on the results 

of quantum–mechanical calculations or can be derived from the electronic wave function or electrostatic field of 

the molecule [38]. Since the electrophilicity index is a chemical reactivity descriptor and it has been used as 

appropriate descriptor of QSAR study. Recently the electrophilicity index has been used as a possible descriptor 

of biological activity confirming the fact that the electrophilicity properly quantifies the biological activity. A 

previous QSAR study made with Multiple Linear Regression and found that the HOMO and LUMO energies 

are the most important descriptors for describing the drug-receptor interaction of the molecules [39]. It has 

found that electrophilicity is sufficient enough to describe the toxicity of the molecule. The usefulness of this 

new reactivity quantity has recently demonstrated in understanding the toxicity of various pollutants in terms of 

their reactivity and site selectivity [40]. HOMO and LUMO related properties are presented in Table 6. 
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Table 6:  Quantum chemical descriptors of mono-functionalized bisTTF 3(a-e) 

Parameters 3a 3b 3c 3d 3e 

EHOMO (eV) -4.798 -4.835 -4.721 -4.772 -4.943 

ELUMO (eV) -1.666 1.712 -1.905 -1.627 -1.657 

ΔEgap(eV) 3.132 6.548 2.816 3.144 3.285 

IE (eV) 4.798 4.835 4.721 4.772 4.943 

EA (eV) 1.666 -1.712 1.905 1.627 1.657 

µ (eV) -3.232 -1.562 -3.313 -3.200 -3.300 

χ (eV) 3.232 1.562 3.313 3.200 3.300 

ƞ (eV) 1.566 3.274 1.408 1.572 1.643 

S (eV) 0.319 0.153 0.355 0.318 0.304 

ω (eV) 3.334 0.372 3.898 3.256 3.315 

3.6. Local reactivity descriptors 

The site selectivity of a chemical system cannot be studied using the global reactivity descriptors. For this 

purpose, appropriate local reactivity descriptors as Fukui function to describe the reactivity of an atom in a 

molecule are needed to be defined. The local reactivity descriptors [41-43] such as Fukui functions (f +, f - , f 0) 

are calculated using the following equations as: 

( ) ( )[ ]NqNqf −+=+ 1 ,  for nucleophilic attak, 

( ) ( )[ ]1−−=− NqNqf , for electrophilic attak, 

( ) ( )[ ] 2110 −−+= NqNqf , for radical attak. 

In these equations, q is the atomic charge (evaluated from Mulliken population analysis, electrostatic derived 

charge, etc.) at the kth atomic site is the neutral (N), anionic (N + 1) or cationic (N - 1) chemical species.  Fukui 

functions for selected atomic sites in compounds 3(a-e) are shown in Tables 7-9. 

Table 7: Order of the reactive sites on compounds 3a and 3b 

Compound 3a Compound 3b 

 Atom  24  C  28  C  2  C  16  C  27  C  Atom  27  C  24  C  2  C  16  C  3  C 

 f +  0.024  0.020  0.019  0.017  0.014  f +  0.050  0. 028  0.018  0.016  0.009 

 Atom  16  C  2  C  4  C  27  C  23  C  Atom  16  C 2  C   4  C  23  C  27  C 

 f -  0.056  0.020  0.013  0.009  0.006  f - 0.059   0.020  0.014  0.006  0.006 

 Atom  0.036  0.020 0.013   0.013  0.012  Atom  16  C  27  C 2  C   24  C  23  C 

 f 0  16  C  2  C  24  C  28  C  27  C  f 0  0.038  0.028  0.019  0.016  0.006 
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Table 8: Order of the reactive sites on compounds 3c and 3d 

Compound 3c Compound 3d 

Atom 3  C 1  O 32  C 13  C 43  C Atom 30  C 24  C 1  C 3  C 20  C 

f + 0.159 0.157 0.128 0.112 0.086 f + 0.050 0.015 0.014 0.010 0.006 

Atom 7  C 25  C 36  C 37  C 14  C Atom 24  C 2  C 31  C 3  C 9  C 

f - 0.048 0.024 0.015 0.009 0.007 f - 0.039 0.026 0.007 0.003 0.002 

Atom 3  C 1  O 32  C 13  C 7 C Atom 24  C 30  C 2  C 3  C 9  C 

f 0 0.076 0.073 0.058 0.058 0.057 f 0 0.027 0.025 0.013 0.007 0.003 

 

Table 9: Order of the reactive sites on compound 7e 

Compound 3e  

 Atom  38  C  10  C  9  C  32  C  2  C 

 f +  0.049  0.015  0.015  0.015  0.010 

 Atom  32  C  2  C  19  C  9  C  39  C 

 f -  0.037  0.027  0.012  0.006  0.004 

 Atom 32  C  38  C  2  C  9  C  10  C 

 f 0  0.026 0.026  0.019  0.010  0.009 

 

3.7. Natural bond orbital analysis (NBO) 

 The stabilization energies of the title compounds were computed by using second-order perturbation theory in 

order to investigate the intra and intermolecular interactions, interaction among bonds, conjugative interactions. 

For each donor NBO(i) (Natural Bond Orbital) and acceptor NBO(j), the stabilization energy E(2) associated 

with electron delocalization between donor and acceptor is estimated as [44,45]. 

ij

2

iij E-E
j)(i,FqΔE)E( ==2  

where qi is the donor orbital occupancy, Ei, Ej are diagonal elements (orbital energies) and Fij is the off-diagonal 

NBO Fock matrix element.  

The results of second-order perturbation theory analysis of the Kohn-Sham Matrix at B3LYP/6-31G (d,p) level 

of theory are presented in Tables 10-14.  
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Table 10: Second order perturbation theory analysis of Fock matrix on NBO of compound 3a 

Donor(i) ED/e Acceptor(j) 
 

ED/e E 
Kcal/mol 

E(j)-E(i) 
a.u 

F(i.j) 
a.u 

LP(2)O20 1.79953 π*C12-O21 0.27738 46.99 0.33 0.113 
LP(2)O21 1.84092 δ*C12-O20 0.10457 33.49 0.62 0.131 
LP(2)S15 1.73305 π*C13-C25 0.25974 25.61 0.26 0.072 
LP(2)S5 1.76194 π*C3-C4 0.23117 23.11 0.26 0.069 
LP(2)S14 1.77661 π*C13-C25 0.25974 21.12 0.25 0.065 
LP(2)S6 1.78107 π*C3-C4 0.23117 20.76 0.26 0.066 
LP(2)S19 1.79602 π*C27-C28 0.36707 19.58 0.24 0.063 
LP(2)S8 1.79987 π*C23-C24 0.36681 19.42 0.24 0.063 
LP(2)S7 1.80019 π*C23-C24 0.36681 19.39 0.24 0.063 
LP(2)S18 1.79869 π*C27-C28 0.36707 19.30 0.24 0.063 
πC13-C25 1.90090 π*C12-O21 0.27738 18.46 0.31 0.070 
LP(2)O21 1.84092 δ*C12-C13 0.06571 18.36 0.70 0.103 
LP(2)S37 1.85590 π*C27-C28 0.36707 17.41 0.24 0.061 
LP(2)S30 1.85679 π*C23-C24 0.36681 17.30 0.24 0.061 
LP(2)S14 1.77661 π*C16-C17 0.37904 17.25 0.25 0.062 
LP(2)S6 1.78107 π*C1-C2 0.38033 16.95 0.26 0.062 
LP(2)S5 1.76194 π*C1-C2 0.38033 16.87 0.26 0.061 
LP(2)S15 1.73305 π*C16-C17 0.37904 16.30 0.26 0.060 
LP(2)S18 1.79869 π*C16-C17 0.37904 13.23 0.25 0.054 
LP(2)S19 1.79602 π*C16-C17 0.37904 13.16 0.25 0.054 

 

Table 11:  Second order perturbation theory analysis of Fock matrix on NBO of compound 3b 

Donor(i) ED/e Acceptor(j) ED/e E 
Kcal/mol 

E(j)-E(i) 
a.u 

F(i.j) 
a.u 

LP(2)O20 1.79971 π*C12-O21 0.27779 47.06 0.33 0.113 
LP(2)O21 1.84103 δ*C12-O20 0.10462 33.49 0.62 0.131 
LP(2)S15 1.73486 π*C13-C25 0.25983 25.63 0.26 0.072 
LP(2)S5 1.76231 π*C3-C4 0.23109 23.08 0.26 0.069 
LP(2)S14 1.77933 π*C13-C25 0.25983 21.11 0.25 0.065 
LP(2)S6 1.78100 π*C3-C4 0.23109 20.79 0.26 0.066 
LP(2)S8 1.80003 π*C23-C24 0.36694 19.39 0.24 0.063 
LP(2)S19 1.78788 π*C27-C28 0.31178 19.36 0.25 0.063 
LP(2)S7 1.80040 π*C23-C24 0.36694 19.35 0.24 0.063 
LP(2)S18 1.79148 π*C27-C28 0.31178 18.98 0.25 0.063 
πC13-C25 1.90102 π*C12-O21 0.27779 18.48 0.31 0.070 
LP(2)O21 1.84103 δ*C12-C13 0.06562 18.34 0.70 0.103 
LP(2)S30 1.85645 π*C23-C24 0.36694 17.48 0.24 0.061 
LP(2)S14 1.77933 π*C16-C17 0.37934 17.10 0.26 0.061 
LP(2)S6 1.78100 π*C1-C2 0.38029 16.94 0.26 0.062 
LP(2)S5 1.76231 π*C1-C2 0.38029 16.84 0.26 0.061 
LP(2)S15 1.73486 π*C16-C17 0.37934 16.18 0.27 0.06 
LP(2)S19 1.78788 π*C16-C17 0.37934 13.79 0.25 0.055 
LP(2)S18 1.79148 π*C16-C17 0.37934 13.71 0.26 0.055 
LP(2)S8 1.80003 π*C1-C2 0.38029 12.84 0.26 0.054 
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Table 12:  Second order perturbation theory analysis of Fock matrix on NBO of compound 3c 

Donor(i) ED/e Acceptor(j) ED/e E 
Kcal/mol 

E(j)-E(i) 
a.u 

F(i.j) 
a.u 

π*C43-C50 0.40147      π*C46-C48 0.34645      204.23 0.02 0.083 
π*C42-C44 0.40165      π*C46-C48 0.34645      203.18 0.02 0.083 
LP(2)O1 1.78787     π*C2-O4 0.26951     42.78 0.34 0.109 
LP(2)O4 1.83434     δ*O1-C2 0.11477      36.52 0.61 0.135 
LP(2)S8 1.73259     π*C3-C6 0.26286     25.91 0.25 0.073 
πC46-C48 1.66399     π*C42-C44 0.40165      21.65 0.26 0.069 
πC46-C48 1.66399     π*C43-C50 0.40147      21.64 0.26 0.069 
πC26-C28 1.67780     π*C25-C27 0.37240      21.45 0.28 0.070 
LP(2)S5 1.78027     π*C3-C6 0.26286     21.10 0.24 0.065 
πC25-C27 1.64899     π*C30-C32 0.37522      20.65 0.29 0.070 
πC30-C32 1.64612     π*C26-C28 0.32020      20.54 0.28 0.068 
πC30-C32 1.64612     π*C25-C27 0.37240      20.44 0.27 0.067 
LP(2)S38 1.78315     π*C37-C52 0.24718      19.45 0.27 0.066 
LP(2)S12 1.78711     π*C13-C14 0.31289     19.33 0.25 0.063 
πC25-C27 1.64899     π*C26-C28 0.32020      19.31 0.29 0.068 
LP(2)S11 1.79087     π*C13-C14 0.31289     18.95 0.25 0.063 
πC43-C50 1.68329     π*C42-C44 0.40165      18.72 0.28 0.066 
πC42-C44 1.68350     π*C43-C50 0.40147      18.71 0.28 0.066 
πC26-C28 1.67780     π*C30-C32 0.37522      18.64 0.28 0.066 
πC3-C6 
 

1.89840 
     

π*C2-O4 
 

0.26951 
     

18.50 
 

0.31 
 

0.070 
 

 

Table 13: Second order perturbation theory analysis of Fock matrix on NBO of compound 3d 

Donor(i) ED/e Acceptor(j) ED/e E 
Kcal/mol 

E(j)-E(i) 
a.u 

F(i.j) 
a.u 

LP(2)O18 1.80391 π*C19-O21 0.27379 47.07 0.33 0.114 
LP(2)O21 1.84121 δ*O18-C19 0.10285 33.96 0.63 0.132 
LP(2)S25 1.73800 π*C20-C23 0.25889 25.34 0.26 0.072 
LP(2)S6 1.77855 π*C3-C4 0.31286 21.64 0.23 0.065 
LP(2)S22 1.77796 π*C20-C23 0.25889 21.25 0.25 0.065 
LP(2)S5 1.78613 π*C3-C4 0.31286 20.71 0.23 0.064 
LP(2)S8 1.78918 π*C9-C10 0.23221 19.66 0.27 0.066 
LP(2)S7 1.79030 π*C9-C10 0.23221 19.55 0.27 0.066 
LP(2)S29 1.78831 π*C30-C31 0.31265 19.33 0.25 0.063 
LP(2)S28 1.79189 π*C30-C31 0.31265 18.95 0.25 0.063 
LP(2)O21 1.84121 δ*C19-C20 0.06706 18.75 0.69 0.104 
πC20-C23 1.90481 π*C19-O21 0.27379 17.91 0.31 0.070 
LP(2)S22 1.77796 π*C24-C27 0.37890 17.06 0.25 0.061 
LP(2)S8 1.78918 π*C1-C2 0.38191 16.98 0.26 0.062 
LP(2)S7 1.79030 π*C1-C2 0.38191 16.93 0.26 0.062 
LP(2)S25 1.73800 π*C24-C27 0.37890 16.10 0.26 0.060 
LP(2)S29 1.78831 π*C24-C27 0.37890 13.68 0.25 0.055 
LP(2)S28 1.79189 π*C24-C27 0.37890 13.60 0.26 0.055 
LP(2)S6 1.77855 π*C1-C2 0.38191 13.50 0.26 0.055 
LP(2)S5 1.78613 π*C1-C2 0.38191 13.22 0.26 0.055 
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Table 14:  Second order perturbation theory analysis of Fock matrix on NBO of compound 3e 

Donor(i) ED/e Acceptor(j) ED/e E 
Kcal/mol 

E(j)-E(i) 
a.u 

F(i.j) 
a.u 

LP(2)O26 1.80464 π*C27-O29 0.27348 46.89 0.33 0.114 
LP(2)O29 1.84110 δ*O26-C27 0.10313 34.05 0.63 0.132 
LP(2)S33 1.73746 π*C28-C31 0.25938 25.42 0.26 0.072 
LP(2)S6 1.76857 π*C3-C4 0.31247 21.82 0.23 0.065 
LP(2)S30 1.77822 π*C28-C31 0.25938 21.25 0.25 0.065 
LP(2)S5 1.77589 π*C3-C4 0.31247 20.90 0.23 0.064 
LP(2)S8 1.79305 π*C9-C10 0.36710 19.61 0.24 0.063 
LP(2)S7 1.79465 π*C9-C10 0.36710 19.47 0.24 0.063 
LP(2)S37 1.78805 π*C38-C39 0.31280 19.35 0.25 0.063 
LP(2)S36 1.79211 π*C38-C39 0.31280 18.91 0.25 0.063 
LP(2)O29 1.84110 δ*C27-C28 0.06701 18.76 0.69 0.104 
πC28-C31 1.90449 π*C27-O29 0.27348 17.96 0.31 0.070 
LP(2)S12 1.85693 π*C9-C10 0.36710 17.29 0.24 0.061 
LP(2)S30 1.77822 π*C32-C35 0.37896 17.06 0.26 0.061 
LP(2)S33 1.73746 π*C32-C35 0.37896 16.11 0.27 0.06 
LP(2)S6 1.76857 π*C1-C2 0.37299 15.01 0.26 0.058 
LP(2)S5 1.77589 π*C1-C2 0.37299 14.74 0.26 0.057 
LP(2)S37 1.78805 π*C32-C35 0.37896 13.69 0.25 0.055 
LP(2)S36 1.79211 π*C32-C35 0.37896 13.63 0.26 0.055 
LP(2)S8 1.79305 π*C1-C2 0.37299 13.52 0.26 0.055 

 

3.8. Nonlinear optical properties (NLO) 

 Non-linear optics deals with the interaction of applied electromagnetic fields in various materials to generate 

new electromagnetic fields, altered in wave number, phase or other physical properties [46]. Organic molecules 

able to manipulate photonic signals efficiently are of importance in technologies such as optical communication, 

optical computing and dynamic image processing [47,48].In this context the first hyperpolarizability of the title 

compounds are also calculated in the present study. The first hyperpolarizability of these novel molecular 

systems is calculated using DFT method based on the finite field approach. In the presence of an applied electric 

field, the energy of a system is a function of the electric field. First hyperpolarizability is a third rank tensor that 

can be described by a 3 × 3 × 3 matrix. The 27 components of the 3D matrix can be reduced to 10 components 

due to the Kleinman symmetry [49].The components of β are defined as the coefficients in the Taylor series 

expansion of the energy in the external electric field. When the electric field is weak and homogeneous, this 

expansion becomes 

...1/61/2 += kjiijkjiijii
0 FFFβ-FFα-Fμ-EE  

Where E0 is the energy of the unperturbed molecules, Fi is the field at the origin and µi, αij, βijk are the 

components of dipole moment, polarizability, and first hyperpolarizability, respectively. The total static dipole 

moment (µ0), anisotropy of the polarizability (α0), mean polarizability (Δα) and the total first hyperpolarizability 

(β0) using (x, y, z) components are defined as [50]: 
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[ ] 21222 / 
zyxtot μμμμ ++=  

( ) 3/αααα zzyyxx ++=  

( ) ( ) ( )[ ] 2122222221 6662
/ 

yzxyxz
 

xxzz
 

zzyy
 

yyxx
/ αααααααααΔα +++−+−+−= −  

( ) 21222 / 
zyxtot ββββ ++=  

xzzxyzxxxx ββββ ++=  

yzzxxyyyyy ββββ ++=  

yyzxxzzzzz ββββ ++=  

The total molecular dipole moment and first order hyperpolarizability are depicted in Table 15. The calculated 

hyperpolarizability of the title compounds is 35 times that of the standard NLO material urea (0.13 × 10 -30 esu) 

[51]. We conclude that the title compound is an attractive object for future studies of nonlinear optical 

properties. 

Table 15:  The dipole moments µ (D), polarizability α, the anisotropy of the polarizability Δα (esu), and the first 

hyperpolarizability β (esu) of mono-functionalized bisTTF 3(a-e) 

Parameters 3a 3b 3c 3d 3e 
βxxx -209.359 -778.587 -580.589 1118.394 1189.897 
Βyyy 8.506 -31.028 -1.019 53.188 68.992 
Βzzz 26.877 24.484 14.619 70.880 48.589 
Βxyy 70.081 -60.440 16.835 -30.674 -62.454 
Βxxy -309.639 -352.577 -137.981 93.809 94.802 
Βxxz -367.971 -41.763 152.570 146.644 -13.529 
Βxzz -14.926 77.194 101.103 -0.310 18.116 
Βyzz 6.951 -16.369 2.679 18.449 24.573 
Βyyz 1.798 -30.645 26.160 6.765 16.505 
Βxyz 28.556 -23.692 -3.285 64.776 86.647 
Βtot(esu)x10-33 4232.154 3745.054 4644.659 10498.923 11311.488 
µx -0.301 -4.020 -0.684 5.192 4.415 
µy -2.455 -3.153 -1.715 3.733 4.096 
µz -0.627 -1.399 1.925 2.083 0.576 
µtot(D) 2.551 5.298 2.668 6.725 6.050 
αxx -175.240 -265.272 -278.053 -230.246 -255.669 
αyy -268.402 -246.876 -268.195 -281.183 -306.831 
αzz -264.279 -262.969 -290.406 -277.582 -302.777 
αxy -11.554 8.443 4.701 -18.614 -26.527 
αxz 6.460 6.237 39.426 -21.237 -36.121 
αyz 7.265 -1.468 2.619 7.068 8.736 
α(esu)x10-24 -34.971 -38.291 -41.331 -38.977 -42.745 
∆α(esu)x10-24 14.056 3.744 10.606 10.444 13.808 
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4. Conclusion 

From the whole of the results presented in this contribution it has been clearly demonstrated that the sites of 

interaction of the title compounds 3(a-e) can be predicted by using DFT-based reactivity descriptors such as the 

hardness, softness, and electrophilicity, as well as Fukui-function calculations. These descriptors were used in 

the characterization and successfully description of the preferred reactive sites and provide a firm explanation 

for the reactivity of the mono-functionalized bis-tetrathiafulvalenes. NBO and NLO analysis reveals that the 

some important intramolecular charge transfer can induce large nonlinearity to the title molecules and the 

intramolecular conjugative interaction around the tetrathiafulvalene core can induce the large conductivity in the 

compounds. Finally we hope that these consequences will be of assistance in the quest of the experimental and 

theoretical evidence for the title compounds in molecular bindings. 
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