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Abstract 

Bike-share program is considered effective and reliable if its stations have bikes and empty docks available at 

any time of a day. Few studies have considered idle bikes in the system and even lesser have glanced on 

modeling bikes idle duration (BID) in the bike-share system. This study applied descriptive statistics and log-

logistic hazard based model on one year Seattle bike-share ridership data to quantify the BID and determine 

factors associated with the bikes’ idle duration. The findings of the study illustrate that the most and least 

effective utilized bike were used for 161 hours and 0.19 hours respectively for the entire year. Winter season, 

especially when raining and snowing was found to increase the likelihood of long BID. On the other end, the 

bikes located in commercial areas were associated with short BID compared to residential land-use. Moreover, 

weekend days and evening peak hours (4 p.m. to 6 p.m.) are associated with less likelihood of the BID 

compared with weekdays and morning peak hours respectively. These findings will facilitate procedures to 

identify the idle bikes for redistribution strategy and enhancing effective utilization of the bike-share system. 
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1. Introduction  

The bike-share program is a relatively recent initiative to encourage more people making short trips to use bikes 

for their daily travel. It is one of the effective methods of reducing car dependent and reducing green gas 

emissions. Bike-share provides users freedom of picking up and return a bicycle at any bike station within the 

respective scheme's service area. There have been several efforts to make sure that the programs are effective. 

One of such efforts attempts to make sure that users can find bikes and an empty dock at any time of the day. 

The absence of the bikes and empty docks at a station is one of the major causes of the users to abandon the 

bike-share program [1]. Thus, researchers determine ways to balance the system [2]. To make sure that both 

bikes and empty docks are available in the stations regularly, most of the bike-share programs adopted a bike-

rebalancing strategy by which bikes are transported by a vehicle from stations with more bikes to the ones with 

fewer bikes. However, there are cases where the bikes are available in the system (station) but are unusable [3] 

or unused. In such situation, the bike-share program becomes less effective and unprofitable.  The system 

creates a hidden cost that most operators have not explored. The longer the bikes remain unused the less the 

program makes a profit. The operator may incur bike servicing cost or the regular maintenance costs while the 

bikes have not been used. The maiden review of the Seattle bike-share program (Pronto) data indicated that the 

effective bike hours utilized per year were only about 2%. For the bike program to be effective, the quantity of 

the idle time of an individual bike and the factors associated with the bike idle duration must be considered.This 

study utilized both descriptive and inferential statistics to quantify the bikes idle duration (BID) and determine 

its association with other independent factors. The Seattle bike-share publicly accessible data that contain trip, 

weather and station information was used. In addition, Seattle land use data were utilized to assess the 

association with the BID. To quantify this quantity of individual bike, the difference between the maximum 

effective bike hour and total bike utilization time was computed. The log-logistic hazard based regression was 

applied to determine the associated factors. The variables of interest in the model were temporal and land-use 

factors. 

2. Previous Studies 

Since its establishment in Amsterdam in 1960’s, bike-sharing programs have been adopted by over 700 cities 

around the world [4]. They have been effective in creating a larger cycling population, even in the cities without 

prior cycling tradition [5]. They have been receiving great attention in academics and practitioners researching 

at the system level and the station level [6] so they may be a more efficient mode of transportation.  Past studies 

dealt with the wide range of topics regarding design and operations. The design studies focus on locating the 

stations, the capacity (number of lockers, also known as docking points) of each station and the fleet [7]. On the 

other end, the operational studies centered their interests on bikes redistribution/balancing [2], since it was the 

major part of the operational cost [8]. One key strategy to alleviate imbalances was the use of IT-systems of 

recording data from bike sharing program proposed by [9]. 

Kaspi and his colleagues [10] described three situations that may cause a bike to remain idle at a dock. The 

situations involve all three major participants in the bike-share system; the user, the bike, and the station. Per 

their study, the bike idle situation may occur if (1) no renters have arrived at the station, (2) renters have arrived 
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at the station, but no bicycle can be used and no rent transaction has occurred, or (3) the station is 

malfunctioning. The last two reasons cannot be traced by the dataset used in this study yet they have a very 

crucial impact on the user satisfaction if they are not taken care of [3]. Most of the bike-share systems provide to 

the public on-line aggregated information about each station. Regardless of the distance from the bike station to 

user location, smartphone users may query the state of each station, thus, obtain in real-time, the number of 

bicycles and empty locker/docks available. Not only that unusable bike at the station reduces the number of 

usable lockers, but also, they provide inaccurate information regarding the usability of bicycles. They appear to 

be available at the station when the user checks the availability online. Parallel to that, the operator incurs 

unobservable costs by having the idle bikes at the station for a long time. Literature reviews reveal that few 

studies have focused on the unused bikes at the bike station and particularly on the time the bike remain idle at 

the station (BID). The time the bikes remain idle in the system and the factors associated with bike idle duration 

has not been given enough attention by researchers. Therefore, this study quantified the bike idle duration and 

presented the associated factors. 

3. Data Description and Processing 

This study utilized one-year public accessible bike-share data from Seattle bike-share program (Pronto) 

collected between October 2014 and October 2015. The bike-share data are publicly accessible and contains 

information such as trips, stations, and weather. The trip data have information related to trip time (when the trip 

was initiated and terminated), the bike identification number (which is unique for each bike), the station name 

and id where the trip was originated and ended, the use type (annual or short time users) and the gender and 

birth year of the annual members. The time stamp and bike id were the vital information in identifying bikes idle 

durations (BID). The weather data contained the daily weather information in the service area. Regarding the 

station data, the station name and id, the total count of the docks at the station and the coordinates are reported. 

Furthermore, we obtained land use data downloaded from Seattle Department of Construction and Inspections. 

The Seattle land use data described the land use characteristics of all the locations in Seattle, including those 

where the bike-share stations are located. These can be categorized into commercial, multi-family/residential 

(low rise, and high-rise) and mixed land use. The Quantum Geographical Information System (QGIS) software 

version 2.12.3 facilitated the identification of the major trip generators or attractors located within walkable 

distance (0.5 miles) from the bike-share station. With consideration of the start time, stop time and bike id 

variables in the trip data, the BIDs were computed. The BIDs were computed as the difference in the time 

between the check in of the bike (stop time) to the next check out (start time) of the same bike. In all 142,365-

bike usage incidences, the incidences of the idle durations of an individual bike at a time varied from zero 

minutes to 323 days. This means, there was a situation that a bike that remained idle at the station for 323 days 

without being used while there were other situations that bikes were checked out as soon as preceding users 

returned them. To clearly show the difference in these situations, the idle durations were grouped into four 

categories (Figure 1). With 102,993 incidences, the idle time less than one-day accounts for about 72%, this idle 

duration can be the situation by which bikes were effectively utilized. The second category by considering the 

number of incidence (34,026) which accounted for 24% of all incidents was the idle duration between one day 

and five days. The idle duration between five and ten days accounted for 2.6%, while the longest idle duration 

category, which is over ten days, explanations 1.1% of all the incidents. Having that long idle duration of the 
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bike does not translate that the bikes were not used, but there were repetitions of usage of the same bikes while 

some others remained unused for a long period. 

 

Figure 1: Number of observations for each idle time category 

3.1. Descriptive statistics 

Aggregating the bikes idle duration 

The aggregated idle duration of the bike (BID) for the entire year was computed as a sum of all idle duration of 

the same bike for the whole year. Although the data shows that the bike riding activities were done for the whole 

day, effective bike usage time was less during nighttime. Therefore, we considered only eighteen (18) hours per 

day as the effective bike usage time in the analysis. The sum of all trip durations for the most effectively used 

bikes was 161.42 hours, which suggests that the bike remained idle for 6408.58 hours, which equals 268 full 

days per year. The summation of the trip duration for the least used bikes was 0.19 hours per year which is 

equivalent to 11.4 minutes, this implies, the bike remained idle for almost for the entire year. The percentage of 

the utilized and idle bike hour to the total bike hours available per year were computed, Table 1 shows ten least 

and ten most utilized bikes per year respectively. Considering 18 hours as the effective bike utilization time per 

day, results in Table 1 indicate that the maximum attainable percentage bike utilization is 2.46%, which means 

the remaining 97.54% was the idle time.  

The summation of the trip duration for the least used bikes was 11.4 minutes, which means the bike remained 

idle for almost for the entire year. The percentage of the utilized and idle bike hour to the total bike hours 

available per year were computed, Table 1 shows ten least and ten most utilized bikes per year respectively. 
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Considering 18 hours as the effective bike utilization time per day, results in Table 1 indicate that the maximum 

attainable percentage bike utilization is 2.46%, which means the remaining 97.54% was the idle time.  

Table 1: The Least and Most Utilized Bikes per Year The ten least utilized bikes per year 

 SN Bike ID 

Utilization 

time 

(hrs.)/year 

Maximum bike 

hours/year 

Idle bike 

hours/year 

Percentage bike 

hour utilized 

Percentage idle 

bike hour 

1 SEA00001 0.19 6570 6569.81 0.00% 100.00% 

2 SEA00012 0.21 6570 6569.79 0.00% 100.00% 

3 SEA00011 1.04 6570 6568.96 0.02% 99.98% 

4 SEA00378 2.00 6570 6568.00 0.03% 99.97% 

5 SEA00331 3.11 6570 6566.89 0.05% 99.95% 

6 SEA00130 5.29 6570 6564.71 0.08% 99.92% 

7 SEA00225 7.36 6570 6562.64 0.11% 99.89% 

8 SEA00076 7.48 6570 6562.52 0.11% 99.89% 

9 SEA00123 8.99 6570 6561.01 0.14% 99.86% 

10 SEA00050 10.52 6570 6559.48 0.16% 99.84% 

       

The ten most utilized bikes per year 

1 SEA00046 144.47 6570 6425.53 2.20% 97.80% 

2 SEA00390 144.70 6570 6425.30 2.20% 97.80% 

3 SEA00142 145.98 6570 6424.02 2.22% 97.78% 

4 SEA00121 146.15 6570 6423.85 2.22% 97.78% 

5 SEA00481 146.20 6570 6423.80 2.23% 97.77% 

6 SEA00029 148.83 6570 6421.17 2.27% 97.73% 

7 SEA00222 150.41 6570 6419.59 2.29% 97.71% 

8 SEA00413 153.99 6570 6416.01 2.34% 97.66% 

9 SEA00218 158.32 6570 6411.68 2.41% 97.59% 

10 SEA00453 161.42 6570 6408.58 2.46% 97.54% 

 

Variation of BID by seasons of the year 

The variation of the BID by the seasons of the year was also studied. The aim was to determine the season with 

high bike usage and the associated bike idle duration regarding the different categories of the idle duration. As it 

was expected, summer season accounted for most (36.4%) of the trips made in 2014/2015 followed by autumn 
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(27%), spring (22.2) and the winter season had the least (14.4%) bike utilization. Moreover, the summer season 

accounted for the most of the idle bikes remained on the docks for less than a day (Figure 2). On the other end, 

winter season was the leading contributor for the bikes remained idle for five days or more. This might be 

attributed to the unfavorable weather condition during the winter season. 

 

Figure 2: Bike idle durations per season of the year. 

To explicitly reveal the number of bikes remained idle for every hour of the day, the average number of bikes 

checked out and returned was compared to the total number of bikes available in the system. The system had 

482 bikes stationed in 54 stations. 

 

Figure 3: Bike utilization per each hour of the day 

Figure 3 shows the average bike utilization in terms of the number of checkouts and check-ins (returns) for the 

24 hours of the day in the entire year. It can be shown that there were more bike utilization rates during the 
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daytime than in the night times. Among the available 482 bikes in the system, on average, the maximum number 

of bikes checked out per hour was 40, this occurred between 5 pm and 6 pm. The rest bikes, which were about 

440 bikes, remained idle. The trip analysis indicated that peak hours for evening and morning are 9 am and 7 pm 

respectively.The right-hand side axis of Figure 3 presents the difference between the average number of bikes 

returned and checked out in the day for the entire year. The positive values imply that more bikes were returned 

than checked out while the negative values denote the vice versa. It can be observed that from around 4:30 am to 

4:15 pm there were more there were more checkouts than returns while from around 4:15 pm to around 4:30 am 

there more returns than checkouts. At this period (4:15 pm to 4:30 am) the system had more idle bikes. It was 

also observed that around 4:30 am and 4:15 pm, the system balanced. However, balancing of the system does 

not imply that the bikes were not idle, but the number of checkouts and those of check-ins was equal.  

4. Bikes Idle Duration (Bid) Modeling Method 

The hazard-based duration (HBD) model was applied in this study. Originated in the medical and industrial 

engineering field [11], these models have penetrated in transportation engineering, especially in estimating 

traffic incident duration over the past years. They are based on the survival theory, by which the time until an 

event of interest occurs is the outcome variable. The bike idle duration aligns with survival model theory and 

assumptions applied in incident duration estimations. For instance, the survival of the incident on a roadway is 

the time until it is cleared [12], the same applies for the survival of the idle bike on the dock/station; it is the 

time until the next checkout is performed. Different hazard-based models have been applied in modeling these 

time-accelerated events including Cox regression, Proportional hazard Weibull mixtures, log-logistic and others 

[12-15]. To specify the effects of dependent variables on the hazard function, the proportional hazard (PH) 

models and accelerated failure time (AFT) models have been applied. The (PH) models rely on the assumption 

that regression coefficients don’t change with time while the (AFT) models assume the time scale of the survival 

function is rescaled by the covariates [11]  

The hazard function ℎ�𝑡𝑡 𝑍𝑍� � and survival function 𝑆𝑆�𝑡𝑡 𝑍𝑍� � can be presented as (16); 

ℎ(𝑡𝑡 𝑍𝑍� ) = ℎ𝑜𝑜(𝑡𝑡)𝑔𝑔(𝛽𝛽,𝑍𝑍)                                                           (1) 

𝑆𝑆(𝑡𝑡 𝑍𝑍� ) = 𝑆𝑆𝑜𝑜(𝑡𝑡)𝑔𝑔(𝛽𝛽,𝑍𝑍)                                                            (2) 

𝑔𝑔(𝛽𝛽 𝑍𝑍� ) = 𝑒𝑒𝑒𝑒𝑒𝑒(𝛽𝛽,𝑍𝑍)                                                               (3) 

where ℎ𝑜𝑜(𝑡𝑡) represents the baseline hazard function, 𝑆𝑆𝑜𝑜(𝑡𝑡)  implies the baseline survival function and 𝑔𝑔(𝛽𝛽,𝑍𝑍) 

indicates the effect of explanatory variable on hazard and survival time. A distribution assumption such as 

exponential, lognormal, log-logistic, Weibull, and Gompertz are required for the parametric formulation of the 

baseline hazard function. Almost each of the distribution assumptions has a shortfall. The exponential 

distribution is constant with time; the Weibull distribution is limited to monotonicity. This challenges are 

address by applying the log-logistic and lognormal distributions [16]. These models both begin with log linear 

but are different on the assumption of the error term. Log-logistic error follows the logistic distribution while the 
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lognormal error follows the standard normal distribution [17]. The generalized equation is given as; 

ln 𝑡𝑡𝑖𝑖 = 𝑋𝑋𝑖𝑖𝛽𝛽 + 𝜀𝜀𝑖𝑖                                                             (4) 

whereby X = vector of covariates, β = vector of estimated coefficients and ε = error term 

The log-logistic was found to yield sound result than lognormal by Nam and Mannering study when 

investigated highway incident duration [18].  Therefore, in this study also log-logistic model was used to 

evaluate the influence of factors on Bikes Idle Duration (BID). The log-logistic model is given as: 
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where, f(t) id the distribution function, is the survival function and h(t) is the hazard function, λ is a positive 

scale parameter and p is the shape parameter.  

Variable coding and correlation check 

Prior to modeling, it is common to check correlation among variables. 

 The results of the analysis revealed that the maximum correlation coefficient was about 0.47, which was 

between precipitation and rain variables, while the minimum was 0.0001 between spring season and residential 

locations.  

Since variables were not highly correlated, all variables were used in the model. 

 Table 2 shows the summary of the descriptive statistics of the coded variables considered in the model. The 

average idle duration of the bikes is 27.3 hours whereby the minimum is zero hours and the maximum is 7757 

hours.  

The descriptive statistics of other variables can be observed from the table 3. 

5. Model Results and Discussion 

The effects of each variable to the bikes idle duration (BID) are as shown in Table 3. A positive sign of a 

parameter estimate suggests an increase in the BID and a decrease in hazard function associated with an increase 
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or presence of that variable. These paragraphs summarize finding of the model in Table 3. 

 

Table 2: Summary of Variables' Descriptive Statistics 

Variable Type Observations Mean Std. Dev. Min Max 

Dependent variable 

Bike idle duration (hours) Continuous 142364 27.321 80.965 0 7757 

Independent variables 

Temporal variables   

Fall Binary (yes 1 no 0)   142846 0.224 0.417 0 1 

Winter  Binary (yes 1 no 0) 142846 0.144 0.351 0 1 

Summer Binary (yes 1 no 0) 142846 0.363 0.481 0 1 

Spring Binary (yes 1 no 0) 142846 0.269 0.443 0 1 

Weekday Binary (yes 1 no 0) 142846 0.735 0.441 0 1 

Evening peak  Binary (yes 1 no 0) 142846 0.266 0.442 0 1 

 

Weather condition 

Rain Binary (yes 1 no 0) 142846 0.352 0.478 0 1 

Rain and fog Binary(yes 1 no 0) 142846 0.013 0.113 0 1 

Rain and snow Binary (yes 1 no 0) 142846 0.000 0.021 0 1 

Precipitation (in) Continuous 142846 0.048 0.138 0 2.2 

 

Spatial variables 

Residential land use Binary (yes 1 no 0) 142833 0.054 0.227 0 1 

Mixed land use Binary (yes 1 no 0) 142833 0.584 0.493 0 1 

Commercial land use Binary (yes 1 no 0) 142833 0.274 0.446 0 1 

 

Trip attractors or generators within 0.5 miles 

Residences Binary (yes 1 no 0) 142845 0.149 0.356 0 1 

Transportation hubs Binary (yes 1 no 0) 142833 0.067 0.250 0 1 

Offices Binary (yes 1 no 0) 142833 0.492 0.500 0 1 

Recreation  Binary (yes 1 no 0) 142833 0.273 0.445 0 1 
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Table 3: Log-Logistic Bike Idle Duration Survival Model Results 

  Log-Logistic Model estimates     Marginal effects 

Bike idle duration (hrs.) Coeff 
Percent 
change 

(%) 
Std. Err. P-value 

 

dy/dx Std. 
Err. z P-value 

 Temporal variables     
Winter  0.412 50.98 0.018 0.000 3.510 0.154 22.79 0.000 
Summer -0.339 -28.75 0.015 0.000 -2.882 0.127 -22.64 0.000 
Spring -0.111 -10.51 0.015 0.000 -0.947 0.129 -7.34 0.000 
Weekday 0.193 21.29 0.012 0.000 1.643 0.104 15.74 0.000 
Evening peak  -0.435 -35.27 0.012 0.000 -3.700 0.107 -34.71 0.000 

             

 Weather condition            
Rain 0.071 7.36 0.013 0.000 0.605 0.111 5.46 0.000 
Rain and fog 0.105 1107 0.046 0.022 0.891 0.39 2.29 0.022 
Rain and snow 1.363 290.8 0.237 0.000 11.608 2.023 5.74 0.000 
Precipitation (in) 0.529 69.71 0.042 0.000 4.502 0.36 12.51 0.000 

             

 Land-use variables           
Mixed land use -0.332 -28.3 0.016 0.000 -2.830 0.142 -19.97 0.000 
Commercial land use -0.439 -35.5 0.018 0.000 -3.733 0.159 -23.43 0.000 

             

 Trips generators within 0.5 miles of a bike station          
Transportation hubs 0.019 0.8 0.024 0.422 0.166 0.207 0.8 0.422 
Offices 0.084 1.92 0.015 0.000 0.711 0.127 5.58 0.000 
Recreation  -0.018 -1.9 0.017 0.291 -0.154 0.146 -1.06 0.291 

          
/ln_gam 0.119  0.002 0.000   
gamma 1.127  0.002    
Number of subjects 141,743      
Number of failures 141,743 LR chi2(14) 5,541.2   
Time at risk 3,887,287 Prob > chi2 0.000   
Log likelihood -299,731               

 

The result of temporal factors (season of the year, the day of the week and time of a day) in the model indicated 

all variables are statistically significant at 1% significance level (Table 3). In modeling season, the fall season 

was the reference category in which the other seasons were compared in the analysis. The regression results 

revealed that the winter season has the highest impact on BID, suggesting that the BID of an individual bike 

increases by about 3.5 hours in the winter season compared to the fall season. In contrast, the likelihood of BID 

in both the summer and spring seasons is lower than fall season. Results indicated a decrease of 2.8 hours and 

approximately one hour during summer and spring seasons respectively. These findings are consistent with a 

study by Ma and his colleagues [19] who found there was less bike ridership in winter season while more people 

rode bikes during summer seasons.Bearing in mind the peak hours, evening peak hours revealed a negative 

effect on BID as compared to morning peak hours. The model suggests that bikes returned during evening peak 

hours between 4 and 6 pm were statistically significant less likely to remain idle for a long time without being 
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checked out for the next trip. To be specific, the idle durations of the bikes were more likely to decrease by 

approximately 3.7 hours during evening peak hour as compared to morning peak hours. Intuitively, we expect to 

have less idle durations during peak hours since bikes are frequently utilized. This finding supports the 

descriptive statistics indicated in Figure 3. In addition, regarding the day of the week in our model, weekdays 

revealed a higher likelihood of BID than weekends. The increase of idle duration estimated by the model about 

1.6 hours.  

Weather condition 

Rain, fog, snow and precipitations were the variables considered in the regression model. The variables were 

interacted in order not only to expose the impact of a single variable but also the combined impact reflecting the 

reality. It is common to find rain and fog or rain and snow or fog and snow or both simultaneously. The 

combined effect of rain and snow increases the likelihood of longer idle duration. The results show that the 

bikes were more likely to remain idle for about 11.6 hours when there were rain and snow compared to clear 

weather condition. The magnitude of the BID was lower under combined effect of rain and fog compared to the 

previous combination. It is estimated that the bikes idle duration increases by 0.9 hours during this weather 

condition as compared to the clear weather. The rain only event was associated with the increase in BID by 

approximately 0.6 hours. The higher the precipitation amount the higher the likelihood of the longer the BID. 

Furthermore, results show that for every inch increase in precipitation there is 4.5 hours increase in bikes idle 

duration. The results resonate with the previous study [20]. Excluding the combined rain and fog variable, which 

was significant at 5% level, the rest weather condition factors were statistically significant at 1% significance 

level. 

Land-use factors 

The land-use was defined per the location of the station; a buffer size of 0.5 miles was defined for each station 

to determine the main generators and attractors of the bike trips. Residential, commercial and mixed (residential 

and commercial) were the main three land uses while transportation hubs, offices, recreation, and residences 

were the attractors and generators within 0.5 miles. The bikes located in the stations within commercial and 

mixed land use locations were 2.8 hours and 3.7 hours less likely to remain idle compared with those at the 

residential locations. About trips generators and attractors within 0.5 miles of the bike stations, the regression 

results highlighted that the stations located close to the offices were more likely to remain idle compared to the 

bikes whose proximity locations were residences. However, the transportation hubs were not statically 

significant in our model. The results show consistency with findings reported by Bachand-Marleau and his 

colleagues [21] conducted in Montreal, Canada who utilized online survey data and found that the proximity of 

docking stations to residential housing increases bike-share trip frequency, thus, decreases the probability of 

having idle bikes at the station. On the other end, Daddio and Mcdonald [22] results were found contrary to our 

findings, suggesting that proximity to the metro rail was positively correlated with bike trip generation. In 

addition, recreation locations such (parks, beaches etc.) were not statistically significant at 5% level in in our 

study. 
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6. Conclusion and recommendations 

This study applied the descriptive and survival model to quantify Bike Idle Duration (BID) and determine the 

associated factors. It was found that the effective time an individual bike has been utilized in a year range from 

11.4 minutes to approximately 6.7 days.  

The winter season, rainy weather condition with higher precipitation amount were found to increase BID while 

during evening peak hour period (4 p.m. to 6 p.m.), and bike in commercial areas was found to decrease the 

likelihood BID. Comparing with weekend days, weekdays were associated with the increase of the likelihood of 

the long BIDs. The findings of this study can be used to develop a data-driven decision making regarding the 

redistribution strategy.  

This can be achieved through identifying the idle bikes in the system so they can be transferred and used in 

other more active stations. To this end, it is recommended that the number of bikes to be reduced from the 

system during the winter season because they are exposed to unfavorable weather condition while are under-

utilized.  

7. Further study 

This study evaluated the impact of temporal, spatial and land use factors on the bike idle duration (BID).  Most 

of these factors are not under human control, thus, it becomes difficult to address them.  

Therefore, further research should incorporate the human controllable factors such as the frequency and 

locations of the bike redistributions, the number of operators, operation modes and others in the model. This will 

enhance developing countermeasures to improve the efficiency of the bike-share program. 
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