On Chromatic Number and Edge-Chromatic Number of the Ottomar Graph

Mark Caay a*, Esperanza Arugay b

a Convergys Philippines, Apas, Cebu City, 6000, Philippines
b Department of Mathematics, College of Science and Mathematics, Mindanao State University – Iligan Institute of Technology, Tibanga, Iligan City, 9200, Philippines

Email: markycaay126@yahoo.com
Email: adamandeba@yahoo.com

Abstract

The path graph \(P_n \), consists of the vertex set \(V = \{1,2,\ldots,n\} \) and the edge set \(E = \{(1,2),(2,3),\ldots,(n-1,n)\} \). The cycle graph \(C_n \) is the path graph, \(P_n \) with an additional edge \(\{1,n\} \). Define the Ottomar Graph, denoted by \(O_{n,m} \), to be the graph \(C_n \) \(n \in \mathbb{Z}^+ \), \(n \geq 3 \), with a vertex connected by a path \(P_2 \) to a vertex of \(C_m \), \(m \in \mathbb{Z}^+ \), \(n \geq 3 \). \(C_n \) is called the heart while \(C_m \) is called a foot (feet for plural). Note that there are \(n \) copies of \(C_m \). The chromatic number of a graph \(G \), denoted by \(\chi(G) \), is the minimum number of colors the vertices of \(G \) maybe colored such that any two adjacent vertices have different colors. The edge-chromatic number of a graph \(G \), denoted by \(\chi_e(G) \), is the minimum number of colors the edges of \(G \) maybe colored such that any two incident edges have different colors. The chromatic number and the edge-chromatic number of the ottomar graph are determined. When will the two invariants be equal or when will they be unequal? When the connecting path \(P_k \) has order greater than 2, what happens to the value of \(\chi(G) \) and \(\chi_e(G) \)? Also in the paper, the other coloring invariants are compared and investigated with chromatic number and edge-chromatic number.

Keywords: path; cycle; chromatic number; edge-chromatic number; ottomar graph; generalized ottomar graph.

1. Introduction

A pair \(G = (V,E) \) with \(E \subseteq E(V) \) is called a graph (on \(V \)). The elements of \(V \) are the vertices of \(G \), and those of \(E \) the edges of \(G \).

*Corresponding author
The vertex set of a graph G is denoted by V_G and its edge set by E_G. Therefore $G = (V_G, E_G)$. The path graph P_n, consists of the vertex set $V = \{1, 2, \ldots, n\}$ and the edge set $E = \{(1,2), (2,3), \ldots, (n-1,n)\}$. The cycle graph C_n, is the path graph, P_n with an additional edge $\{1,n\}$. The chromatic number of a graph G, denoted by $\chi(G)$, is the minimum number of colors the vertices of G maybe colored such that any two adjacent vertices have different colors. The edge-chromatic number of a graph G, denoted by $\chi_e(G)$, is the minimum number of colors the edges of G maybe colored such that any two incident edges have different colors.

Known Result 1 [2] If C_n is a cycle of order n, then

$$
\chi(C_n) = \begin{cases}
2 & \text{if } n \text{ is even} \\
3 & \text{if } n \text{ is odd}
\end{cases} \tag{1.1}
$$

and,

$$
\chi_e(C_n) = \begin{cases}
2 & \text{if } n \text{ is even} \\
3 & \text{if } n \text{ is odd}
\end{cases} \tag{1.2}
$$

Define the Ottomar Graph, denoted by $O_{n,m}$, to be the graph $C_n, n \in \mathbb{Z}^+, n \geq 3$, with a vertex connected by a path P_2 to a vertex of $C_m, m \in \mathbb{Z}^+, n \geq 3$. C_n is called the heart while C_m is called a foot (feet for plural). Note that there are n copies of C_m.

![Ottomar Graph](image)

2. Identities of Chromatic Number and Edge-Chromatic Number of Ottomar Graph

Theorem 2.1

For all integers $m, n \geq 3, \chi(O_{n,m}) = 3$, if:

Case 1: m,n are both odd

Case 2: m is odd, n is even

Case 3: m is even, n is odd

and

- $\chi(O_{n,m}) = 2$ if m,n are even.

Proof:

- Case 1: m and n are both odd

If m,n are odd, then by equation (1.1), $\chi(C_m) = \chi(C_n) = 3$, thus $\chi(O_{n,m}) \neq 2$. Suppose the vertices of C_m and C_n are colored with the same set of different colors say a_1, a_2, a_3. Then the path P_2 is attached to a vertex colored $a_i, i = 1, 2, 3$ of C_m and the other end vertex is attached to a vertex colored $a_j, j = 1, 2, 3$ of C_n, where $a_i \neq a_j$. Hence, three is the minimum number of colors to color the vertices of $O_{n,m}$, where m, n are both odd. Consequently, $\chi(O_{n,m}) = 3$.

- Case 2: m is odd, n is even

If m is odd and n is even, then by equation (1.1), $\chi(C_m) = 3$ and $\chi(C_n) = 2$, so $\chi(O_{n,m}) \neq 2$. Suppose that the vertices of C_n are colored with two of the colors that also color the vertices of C_m, say a_1, a_2 for C_n and a_1, a_2, a_3 for C_m. Then a path P_2 is attached to vertex colored $a_i, i = 1, 2, 3$ of C_m and other end vertex is attached to a vertex colored $a_j, j = 1, 2, 3$ of C_n, where $a_i \neq a_j$. This means that the minimum number of colors to color the vertices of $O_{n,m}$, where n is even and m is odd is three. Thus, $\chi(O_{n,m}) = 3$.

- Case 3: m is even, n is odd

Proof of this case is similar to case 2.

- Case 4: m, n are both even

If m,n are even then by equation (1.1), $\chi(C_m) = \chi(C_n) = 2$. Suppose the vertices of C_m and C_n are colored with the same set of different colors, say a_1, a_2. Then a path P_2 is attached to a vertex colored $a_i, i = 1, 2$ of
C_m and the other end vertex is attached to a vertex colored say $a_j, j = 1, 2$ of C_n, where $a_i \neq a_j$. Hence, two is the minimum number of colors to color vertices of $O_{n,m}$, where, n, m are both even. Consequently, $\chi(O_{n,m}) = 2$.

Theorem 2.2 For all integers m, n, $m, n \geq 3$, $\chi_e(O_{n,m}) = 3$.

Proof:

To prove this theorem, we consider the following cases:

- **Case 1: m, n are both odd**

If m, n are both odd, then by equation (1.2), $\chi_e(C_m) = \chi_e(C_n) = 3$. Thus, $\chi_e(O_{n,m}) \neq 2$ since there exist three incident edges. Suppose the edges of C_m and C_n are colored with the same set of different colors, say b_i, b_j, b_k. Then a path P_2 connecting C_m and C_n must have an edge colored with one of the colors b_1, b_2, b_3, say $b_i, i = 1, 2, 3$, where b_i is incident to edges colored b_j and b_k of C_m and is also incident to edges colored b_j and b_k of C_n, $b_i \neq b_j \neq b_k$. Hence, three is the minimum number of colors to color the edges of $O_{n,m}$, where n, m are both odd. Consequently, $\chi_e(O_{n,m}) = 3$.

- **Case 2: m, n are both even**

If m, n are both even, then by equation (1.2), $\chi_e(C_m) = \chi_e(C_n) = 2$. Thus, $\chi_e(O_{n,m}) \neq 2$ since there exist three incident edges. Without a loss of generality, suppose the edges of C_m and C_n are colored with the same set of different colors b_1, b_2. Then a path P_2 connecting C_m and C_n where its edge is incident to colors b_1, b_2 edges of C_m and C_n, must have an edge colored with b_3 such that $b_1 \neq b_2 \neq b_3$. Hence, three is the minimum number of colors to color the edges of $O_{n,m}$, where m, n are both even. Consequently, $\chi_e(O_{n,m}) = 3$.

- **Case 3: m is odd, n is even**

If m is odd, n is even, then by equation (1.2), $\chi_e(C_m) = 3$ and $\chi_e(C_n) = 2$. Thus $\chi_e(O_{n,m}) \neq 2$. Without a loss of generalization, suppose that the edges of C_n are colored with two of the colors that also color the edges of C_m, say b_1, b_2 colors of C_n and b_1, b_2, b_3 colors of C_m. Then a path P_2 connecting C_m and C_n must have an edge colored with b_3 and must also be incident to edges colored b_1 and b_2 of C_m and must also be incident to edges colored b_1 and b_2 of C_n. Hence, three is the minimum number of colors to color the edges of $O_{n,m}$, where m is odd, n is even. Consequently, $\chi_e(O_{n,m}) = 3$.

- **Case 4: m is even, n is odd**

If m is even, n is odd, then the proof of this case is similar to case 3.

Corollary 2.1
For all integers \(m, n \geq 3 \)

\[
\chi(O_{n,m}) \leq \chi_e(O_{n,m})
\]

Proof:

Note that for the cases where \(m, n \) are both odd, \(m \) is odd, \(n \) is even, and \(m \) is even, \(n \) is odd, by Theorem 2.1, \(\chi(O_{n,m}) = 3 \) and by Theorem 2.2, \(\chi_e(O_{n,m}) = 3 \). Thus, \(\chi(O_{n,m}) \leq \chi_e(O_{n,m}) \). Similarly, for cases where \(m, n \) are both even, by Theorem 2.1, \(\chi(O_{n,m}) = 2 \) and by Theorem 2.2, \(\chi_e(O_{n,m}) = 3 \). Thus, \(\chi(O_{n,m}) \leq \chi_e(O_{n,m}) \).

Therefore, in all cases, \(\chi(O_{n,m}) \leq \chi_e(O_{n,m}) \).

\[\square\]

Remark 2.1 For all integers \(k \geq 3 \), \(\chi(P_k) = \chi_e(P_k) = 2 \).

3. Generalized Ottomar Graph

Define the Generalized Ottomar Graph, \(O^k_{n,m} \), is graph \(C_n, n \in \mathbb{Z}^+, n \geq 3 \), with each vertex connected by a path \(P_k, k \in \mathbb{Z}^+, k \geq 3 \) to a vertex of \(C_m, m \in \mathbb{Z}^+, m \geq 3 \). \(C_n \) is called a heart while \(C_m \) is called a foot (feet for plural). Note that there are \(n \) copies of \(C_m \).

Theorem 3.1 For all integers \(k = 3, 4 \), \(\chi(O^k_{n,m}) = 3 \) if,

- \(m, n \) are both odd
- \(m \) is odd, \(n \) is even
- \(m \) is even, \(n \) is odd

and

\[
\chi(O^k_{n,m}) = 2, \quad \text{if} \ m, n \ \text{are both even}.
\]

Proof:

- Case 1: \(m, n \) are both odd

If \(m, n \) are both odd, then by equation (1.1), \(\chi(C_m) = \chi(C_n) = 3 \). Thus, \(\chi(O^k_{n,m}) \geq 3 \). Suppose the vertices of \(C_m \) and \(C_n \) are colored with the same set of different colors say \(a_1, a_2, a_3 \). Consider the following subcases where \(k = 3 \) (odd) and \(k = 4 \) (even):

- subcase 1.1: If \(k = 3 \)

Then a path \(P_3 \) with vertices colored with two from the same set of different colors \(a_1, a_2, a_3 \) is attached to a
vertex colored say \(a_i, i = 1,2,3 \) of \(C_m \) and the other end vertex is also connected to \(a_i \) of \(C_n \), such that the second (middle) vertex of \(P_3 \) is \(a_j, j = 1,2,3 \), where \(a_i \neq a_j \). Thus three is the minimum number of colors to color the vertices of \(O_3^{n,m} \), where \(m, n \) are both odd. Consequently, \(\chi(O_3^{n,m}) = 3 \).

- subcase 1.2: If \(k = 4 \)

Note that by Remark 2.1, \(\chi(P_4) = 2 \). Suppose further that \(P_4 \) is colored with two from the same set of different colors that color the vertices of \(C_m \) and \(C_n \), say \(a_i, a_j, i, j = 1,2,3 \). Then, the first vertex of \(P_4 \) is colored \(a_i \) of \(C_m \) and the last vertex of \(P_4 \), colored \(a_j \) is attached to \(a_j \) of \(C_n \). The other vertices of \(P_4 \) are colored \(a_i, a_j \) such that no two adjacent vertices have the same color. Thus, three is the minimum number of colors to color the vertices of \(O_4^{n,m} \), where \(m, n \) are both odd. Consequently, \(\chi(O_4^{n,m}) = 3 \).

- Case 2: \(m \) is odd, \(n \) is even

If \(m \) is odd, \(n \) is even, then by equation (1.1), \(\chi(C_m) = 3 \) and \(\chi(C_n) = 2 \). Thus, \(\chi(O_k^{n,m}) \geq 3 \). Suppose that the vertices of \(C_m \) are colored with two of the different colors that also color the vertices of \(C_m \), say \(a_1, a_2 \) colors for \(C_n \) and \(a_3, a_4, a_5 \) colors for \(C_m \). Consider the following subcases where \(k = 3 \) (odd) and \(k = 4 \) (even):

- subcase 2.1: If \(k = 3 \)

Then a path \(P_3 \) is attached to vertex colored say \(a_i, i = 1,2,3 \) of \(C_m \) and the other end vertex is also connected to a vertex colored \(a_i \) of \(C_n \), such that the second (middle) vertex of \(P_3 \) is \(a_j, j = 1,2,3 \), where \(a_i \neq a_j \). Thus, three is the minimum number of colors to color the vertices of \(O_3^{n,m} \) where \(m \) is odd and \(n \) is even. Consequently, \(\chi(O_3^{n,m}) = 3 \).

- subcase 2.2: If \(k = 4 \)

Note that by Remark 2.1, \(\chi(P_4) = 2 \). Suppose further that \(P_4 \) is colored with two from the same set of different colors that color the vertices of \(C_m \) and \(C_n \), say \(a_i, a_2 \). Then, the first vertex of \(P_4 \) is attached to a vertex colored \(a_i, i = 1,2 \) of \(C_m \) and is adjacent to a vertex colored \(a_j, j = 1,2 \), which is the second vertex of \(P_4 \), and the last vertex is then connected to a vertex colored \(a_j, j = 1,2 \) of \(C_n \), where \(a_i \neq a_j \). Note that the vertices of \(C_m \) are colored \(\{a_1, a_2, a_3\} \). Thus, three is the minimum number of colors to color the vertices of \(O_4^{n,m} \), where \(m \) is odd, \(n \) is even. Consequently, \(\chi(O_4^{n,m}) = 3 \).

- Case 3: \(m \) is even, \(n \) is odd

If \(m \) is even, \(n \) is odd, then the proof of this case is similar to case 2.

- Case 4: \(m, n \) are both even

If \(m, n \) are both even, then by equation (1.1), \(\chi(C_m) = \chi(C_n) = 2 \). Suppose the vertices of \(C_m \) and \(C_n \) are
colored with the same set of different colors say \(a_1, a_2 \). Consider the following subcases where \(k = 3 \) (odd) and \(k = 4 \) (even):

- **subcase 4.1:** If \(k = 3 \)

Then a path \(P_3 \) with vertices colored with the same set of different colors \(a_1, a_2 \) is attached to vertex colored say \(a_i, i = 1, 2, 3 \) of \(C_m \) and the other end vertex is also connected to a vertex colored \(a_i \) of \(C_n \), such that the second (middle) vertex of \(P_3 \) is \(a_j, j = 1, 2, 3 \), where \(a_i \neq a_j \). Thus, two is the minimum number of colors to color the vertices of \(O_3^{n,m} \) where \(m \) is odd and \(n \) is even. Consequently, \(\chi(O_3^{n,m}) = 2. \)

- **subcase 4.2:** If \(k = 4 \)

Note that by Remark 2.1, \(\chi(P_4) = 2. \) Suppose further that \(P_4 \) is colored with two from the same set of different colors that color the vertices of \(C_m \) and \(C_n \), say \(a_1, a_2. \) Then, the first vertex of \(P_4 \) is attached to a vertex colored \(a_i, i = 1,2, 3 \) of \(C_m \) and is adjacent to a vertex colored \(a_j, j = 1,2 \), which is the second vertex of \(P_4 \), and the second vertex is adjacent to a vertex colored \(a_i, i = 1,2 \), which is the third vertex of \(P_4 \), and the last vertex is then connected to a vertex colored \(a_j, j = 1,2 \) of \(C_n \), where \(a_i \neq a_j \). Thus, two is the minimum number of colors to color the vertices of \(O_4^{n,m} \), where \(m \) is odd, \(n \) is even. Consequently, \(\chi(O_4^{n,m}) = 2. \)

It is easy to prove that the next corollaries hold. Proofs are similar to Theorem 3.1.

Corollary 3.1

For all integers \(k \geq 3, k \) is odd,

\[
\chi(0_{n,m}^k) = 3 \quad \text{if:}
\]

- \(m, n \) are both odd
- \(m \) is odd, \(n \) is even
- \(m \) is even, \(n \) is odd

and

\[
\chi(0_{n,m}^k) = 2 \quad \text{if \(m, n \) are both even.}
\]

Corollary 3.2 For *all integers \(k \geq 2, k \) is even,* \(\chi(0_{n,m}^k) = 2. \)

Theorem 3.2 For *all integers \(m, n \geq 3 \) and for integers \(k = 3, 4, \chi_e(0_{n,m}^k) = 3. \)
Proof:

• Case 1: \(m, n\) are both odd

If \(m, n\) are both odd, then by equation (1.2), \(\chi_e(C_m) = \chi_e(C_n) = 3\). Thus, \(\chi_e(O^{k}_{n,m}) \geq 3\). Suppose the edges of \(C_m\) and \(C_n\) are colored with the same set of different colors, say \(b_1, b_2, b_3\).

- subcase 1.1: If \(k = 3\)

Note that \(P_3\) has two edges and suppose we color its edges with two from the set of different colors that color the edges of \(C_m\) and \(C_n\), say \(b_{i}, b_{j}\). Then \(b_{i}\) color of \(P_3\) is attached to \(C_m\) and is incident to edges colored \(b_{j}\) and \(b_{k}\) of \(C_m\), while the other color of the edge of \(P_3\) say \(b_{j}\) is attached to \(C_n\) and is incident to edges colored \(b_{i}\) and \(b_{k}\) of \(C_n\), where \(b_{i} \neq b_{j} \neq b_{k}\). Hence, three is the minimum number of colors that color the edges of \(O^{3}_{n,m}\). Consequently, \(\chi_e(O^{3}_{n,m}) = 3\).

- subcase 2.1: If \(k = 4\)

Note that by Remark 3.1, \(\chi_e(P_4) = 2\) and suppose the edges of \(P_4\) are colored with two from the same set of different colors that color the edges of \(C_m\) and \(C_n\), say \(b_{i}, b_{j}\). Since \(P_4\) has three edges, suppose that \(P_4\) is colored with \(b_{i}\)'s and \(b_{j}\), \(i = 1, 2, 3\), \(j = 1, 2, 3\) such that \(b_{j}\) is the middle edge and the two \(b_{i}\)'s are first and the last edges. Then, \(b_{i}\) of \(P_4\) is connected to \(C_m\) and is incident to edges colored \(b_{j}\) and \(b_{k}\) of \(C_m\), while the other \(b_{i}\) of \(C_n\). Hence, three is the minimum number of colors that color the edges of \(O^{4}_{n,m}\). Consequently, \(\chi_e(O^{4}_{n,m}) = 3\).

• Case 2: \(m\) is odd, \(n\) is even

If \(m\) is odd, \(n\) is even, then by equation (1.2), \(\chi_e(C_m) = 3\) and \(\chi_e(C_n) = 2\). Suppose the edges of \(C_n\) are colored with two from the same set of different colors that color the edges of \(C_m\), say \(b_{1}, b_{2}\) for \(C_n\) and \(b_{1}, b_{2}, b_{3}\) for \(C_m\). By this, the entire proof follows from case 1.

• Case 3: \(m\) is even, \(n\) is odd

If \(m\) is even, \(n\) is odd, then the proof of this case is similar to case 2.

• Case 4: \(m, n\) are both even

If \(m, n\) are both even, then by equation (1.2), \(\chi_e(C_m) = \chi_e(C_n) = 2\). Suppose the edges of \(C_m\) are colored by a set of different colors say \(b_{j}, b_{k}\) and \(C_n\) is colored with the set of different colors, say \(b_{j}, b_{k}\), where \(i, j, k = 1, 2, 3\) and \(b_{1} \neq b_{j} \neq b_{k}\).

- subcase 4.1: If \(k = 3\)
Note that by Remark 2.1, $\chi_e(P_3) = 2$. Clearly, $\chi_e(O^3_{n,m}) \geq 3$ since $O^3_{n,m}$ has three edges incident to each other at the endpoints of P_3. Then b_i color of P_3 is attached to C_m and is incident to edges colored b_j and b_k of C_m, while the other color of the edge of P_3 say b_j is attached to C_n and is incident to edges colored b_i and b_k of C_n and is incident to edges colored b_i and b_k of C_n, where $b_i \neq b_j \neq b_k$. Hence, three is the minimum number of colors that color the edges of $O^3_{n,m}$. Consequently, $\chi_e(O^3_{n,m}) = 3$.

- subcase 4.2: If $k = 4$

Note that P_4 has three edges and by Remark 3.1, $\chi_e(P_4) = 2$. Clearly, $\chi_e(O^4_{n,m}) \geq 3$ since $O^4_{n,m}$ has three edges incident to each other at the endpoints of P_k. Suppose that there are two $b_i's$, $i = 1, 2, 3$ and one $b_j, j = 1, 2, 3$ is the color of the middle edge, while the two $b_i's$, $i = 1, 2, 3$ are the colors of the first and the last edges. Then the first b_i color is attached to C_m and is incident to edges colored b_j and b_k colors C_m, while the other b_i is connected to C_n and is also incident to edges b_j and b_k colors of C_n. Hence, three is the minimum number of colors that color the edges of $O^4_{n,m}$. Consequently, $\chi_e(O^4_{n,m}) = 3$.

Therefore for any cases, the proof follows.

Similar arguments will hold for the last Theorem.

Theorem 3.3 For all integers $m, n \geq 3$, and for all integers $k \geq 3$, $\chi_e(O^k_{n,m}) = 3$.

Corollary 3.3 For all integers $m, n \geq 3$ and for any integers $k \geq 3$,

$$\chi(O^k_{n,m}) \leq \chi_e(O^k_{n,m}) \leq 3.$$

Proof:

Note that for cases where m, n are both odd, m is odd, n is even and m is even, n is odd, by Theorem 3.1, $\chi(O^k_{n,m}) = 3$ and by Theorem 3.2, $\chi_e(O^k_{n,m}) = 3$. Thus, $\chi(O^k_{n,m}) \leq \chi_e(O^k_{n,m})$. Similarly, for cases where m, n are both even, by Theorem 3.1, $\chi(O^k_{n,m}) = 2$ and by Theorem 3.2, $\chi_e(O^k_{n,m}) = 3$. Thus, $\chi(O^k_{n,m}) \leq \chi_e(O^k_{n,m})$. Therefore, in all cases, $\chi(O^k_{n,m}) \leq \chi_e(O^k_{n,m})$.

Acknowledgements

The authors would like to thank the referee for the helpful suggestions and the members of ASRJETS. Special thanks to authors’ families and friends.

References
